2.3.1. Для движения L1 (гидромотор):
Необходимое количество дросселирующих аппаратов уже определено ранее: дросселей – 1 шт., регуляторов расхода – 1 шт.
Покажем путь масла от напорной линии (поз. 1) до сливной (поз. 8) для каждого из участков циклограммы.
Участок 1, 2, 3 (С – стоп): масло к гидромотору не поступает.
Участок 4 (БВ – быстро вперед): 1 – Р1 – 4 – ДР – 3 – РП (через КО) – 2 – Р1 – 5 – Р2 – 6 – М – 7 – Р2 – 8.
Участок 5 (РП – рабочая подача): 1 – Р1 – 2 – РП – 3 – ДР (через КО) – 4 – Р1 – 5 – Р2 – 6 – М – 7 – Р2 – 8.
Участок 6 (БН – быстро назад): 1 – Р1 – 4 – ДР – 3 – РП (через КО) – 2 – Р1 – 5 – Р2 – 7 – М – 6 – Р2 – 8.
Участок 7,8 (С – стоп): масло к гидромотору не поступает.
Участок 9 (РП – рабочая подача): 1 – Р1 – 2 – РП – 3 – ДР (через КО) – 4 – Р1 – 5 – Р2 – 6 – М – 7 – Р2 – 8.
Участок 10 (БН – быстро назад): 1 – Р1 – 4 – ДР – 3 – РП (через КО) – 2 – Р1 – 5 – Р2 – 7 – М – 6 – Р2 – 8.
Участок 11 (ВМЦ – время между циклами): масло к гидромотору не поступает.
Рис. 1. Принципиальная гидравлическая схема привода рабочего органа станка для осуществления вертикальной подачи сверлильной головки.
2.3.2. Для движения L2 (поворотный гидродвигатель):
Необходимое количество дросселирующих аппаратов уже определено ранее: дросселей – 1 шт.
Покажем путь масла от напорной линии (поз. 1) до сливной (поз. 5) для каждого из участков циклограммы.
Участок 1 (С – стоп): масло к гидродвигателю не поступает.
Участок 2 (БВ – быстро вперед): 1 – ДР – 2 – Р – 3 – Д – 4 – Р – 5.
Участок 3, 4, 5, 6 (С – стоп): масло к гидродвигателю не поступает.
Участок 7 (БН – быстро назад): 1 – ДР – 2 – Р – 4 – Д – 3 – Р – 5.
Участок 8, 9, 10, 11 (С – стоп): масло к гидродвигателю не поступает.
Рис. 2. Принципиальная гидравлическая схема привода рабочего органа станка для осуществления поворота стола.
2.3.3. Для движения L3 (гидроцилиндр односторонний с пружинным возвратом):
Необходимое количество дросселирующих аппаратов уже определено ранее: дросселей – 1 шт.
Покажем путь масла от напорной линии (поз. 1) до сливной (поз. 4) для каждого из участков циклограммы.
Участок 1 (О – отжим): Ц (возвратная пружина) – 3 – Р – 4.
Участок 2 (С – стоп): давление выравнивается с атмосферным.
Участок 3 (З – зажим): 1 – ДР – 2 – Р – 3 – Ц.
Участок 4, 5 (С – стоп): давление поддерживается максимальным.
Участок 6 (О – отжим): Ц (возвратная пружина) – 3 – Р – 4.
Участок 7 (С – стоп): давление выравнивается с атмосферным.
Участок 8 (З – зажим): 1 – ДР – 2 – Р – 3 – Ц.
Участок 9, 10, 11 (С – стоп): давление поддерживается максимальным.
Рис. 3. Принципиальная гидравлическая схема привода рабочего органа станка для осуществления фиксации стола.
Рис. 4. Принципиальная гидравлическая схема.
3. Определение основных параметров гидросистемы и выбор оборудования
3.1. Расчет подачи масла в исполнительные гидродвигатели
Расчет подачи масла необходим для определения типоразмеров гидроаппаратуры управления, трубопроводов и насосной установки, а также для настройки аппаратов.
Подача масла рассчитывается по каждому участку циклограммы движения, отдельно для каждого гидродвигателя. Исходными данными для расчетов являются: линейная скорость движения рабочего органа станка (угловая) и площадь поршня (рабочий объем).
3.1.1. Расчет подачи масла для гидромотора (ВСГ):
Подача масла определяется по формуле:
л/мин.где: V0 – рабочий объем гидроматора, см3;
Vi– линейная скорость движения рабочего органа станка, мм/мин;
u – передаточное число редуктора;
S – шаг ходового винта, мм.
л/мин. л/мин.3.1.2. Расчет подачи масла для гидродвигателя (ПС):
Подача масла определяется по формуле:
л/мин.где: QДmax– расход масла при максимальной скорости поворота, л/мин;
ωi– угловая частота вращения рабочего органа станка, с-1;
3.1.3. Расчет подачи масла для гидроцилиндра (Ф):
Подача масла определяется по формуле:
л/мин.где: Fнi– площадь поршня в напорной линии, мм2;
Vi– линейная скорость движения рабочего органа станка, мм/мин;
По полученным значениям строим циклограммы подачи масла, сначала отдельно для каждого гидродвигателя, затем суммарную.
Рис. 5. Циклограммы подачи масла.
3.2. Расчет сил трения
Расчет сил трения необходим для последующего уточненного расчета давлений в гидросистеме. Давление, наряду с расходом жидкости, являются основными параметрами, позволяющими осуществить рациональный выбор гидрооборудования, в т. ч. насосной установки.
3.2.1. Расчет сил трения привода вертикальной подачи сверлильной головки
Для осуществления вертикальной подачи сверлильной головки (поступательное перемещение) применяется гидромотор Г15-23Н. В данном случае силы трения учитываются только в направляющих станка. Силу трения можно определить по формуле:
где: μ – коэффициент трения; при страгивании μ=0,2; при рабочей подаче
μ=0,10-0,15; при холостом ходе μ=0,8-0,12;
N – сила, действующая по нормали к направляющим, Н.
Рис. 5. Расчетная схема привода сверлильной головки вертикально-сверлильного станка по средствам передачи «винт-гайка».
Н. Н.3.2.2. Расчет сил трения привода фиксации стола
Для осуществления фиксации стола (поступательное перемещение) применяется гидроцилиндр.
При использовании гидроцилиндра силы трения возникают:
- В уплотнении, между поршнем и гильзой цилиндра;
- В уплотнении, между штоком и поршнем;
- В направляющих рабочего органа станка.
Сила трения в уплотнении определяется по формуле:
Н.Рис. 6. Расчетная схема привода фиксации стола.
Н. Н. Н.3.3. Расчет давлений в гидросистеме
Для выбора гидроаппаратуры и насосной установки и оценки энергетических характеристик необходимо уточнить значения предварительно выбранного давления в напорной линии, в зависимости от фактических условий.
Величина настройки предохранительного клапана в гидросистеме:
где: ΔрR- потери давления на преодоление только полезной нагрузки, Мпа;
ΔрТ, ΔрG - потери давления, соответственно, на преодоление сил трения и веса подвижных частей, Мпа;
ΔрС- потери давления, обусловленные наличием в сливной линии подпорного клапана (0,3÷0,5 Мпа);
FС- площадь поршня со стороны сливной линии, мм2;
КЛ- коэффициент, учитывающий потери давления в напорной и сливной линиях.
Расчеты по этой формуле производим рассматривая каждый участок для отдельных видов движения рабочего органа.
Для движения L1:
Мпа Мпа Мпа МПа МПа МПа Мпа Мпа МПа МПа Мпа