Смекни!
smekni.com

Эпюр как инструмент исследования потребительского поведения (стр. 2 из 3)

Это значит, что при наличии у исследователя проекции равновесной кривой товара А на плоскость "объем товара А - доход" и проекции равновесной кривой товара Б на плоскость "объем товара Б - доход", он может построить третью проекцию, а именно проекцию совместного распределения этих двух товаров (в зависимости от дохода потребителя) на плоскость "объем товара А - объем товара Б". Это изображение и является предметом исследования в теории потребительского поведения и принципиально может быть получена иным путем, чем в классической экономической теории.

В попытках трехмерного изображения ситуации на плоскости рисунка такой точности получить нельзя - возникают очень большие сложности с выверкой углов осей координат, пропорций и тому подобное.

В данной книге нет возможности более подробно останавливаться на методе построения эпюров. Для тех читателей, кому затруднительно использование методики построения эпюров, приведенных в этой книге, я рекомендую изучить любой учебник по начертательной геометрии, в котором обязательно есть раздел, посвященный вопросам построения эпюров.

Эпюр объемов распределения двух товаров повседневного спроса

Ранее мною было получено несколько типов равновесных кривых, попарное исследование которых с помощью эпюров может занять очень большой объем книги. Действительно, как следует из материалов параграфов 7 и 8 моей книги, существует четыре принципиально различных вида равновесных кривых (а сколько еще их возможных подвидов!). Совместное распределение этих кривых дает десять пар возможных распределений - кривая товара первого типа с аналогичной формы кривой другого товара (огурцы и помидоры, например), кривая товара первого типа с кривой товара второго типа и т.д. до пары - кривая товара четвертого типа с аналогичного рода товаром.

Для того, чтобы привести в некий порядок указанную возможную совокупность, рассмотрю вначале совместное распределение двух различных видов товара повседневного спроса.

При совместном рассмотрении указанных кривых для получения закономерности совместного распределения товаров возможно два принципиально различных случая.

Первый случай, о котором следует говорить, что он будет наиболее часто встречающимся в экономической практике, характеризуется тем, что проекции кривых каждого товара имеют отличный друг от друга вид. То есть они имеют разную размерность объемов; размах и месторасположение максимумов и минимумов, точек перегиба; отличные друг от друга асимптоты; углы наклонов и т.п.

Второй случай, возможный чисто теоретически, но вероятность его встречи на практике крайне мала - когда кривые имеют абсолютно одинаковый характер при одинаковом масштабе объемов. То есть эти кривые имеют одинаковую размерность объемов, размах и месторасположение максимумов и минимумов, точек перегиба, одинаковые асимптоты, углы наклонов и т.п.

Впрочем, это обстоятельство не является основанием для того, чтобы игнорировать полностью такую возможность и не рассматривать ее в моей теоретической работе.

Рисунок 1. Проекции равновесных кривых товаров А и Б

На рисунке 1 изображены две проекции равновесных кривых на плоскости объем-доход, причем эти проекции отличны одна от другой. Для того, чтобы изобразить кривую совместного распределения объемов этих двух товаров в трехмерном пространстве в зависимости от дохода, необходимо представить, что это пространство определяют три ортогональные плоскости, а именно:

плоскость доход - объем товара А,

плоскость доход-объем товара Б,

плоскость объем товара Б -объем товара А.

Кривая совместного распределения товаров в зависимости от дохода, располагающаяся в указанном трехмерном пространстве, имеет в общем случае сложный нелинейный характер. Как и любая кривая в пространстве, эта кривая также имеет свои проекции на три составляющие данное пространство плоскости. Две проекции, как легко заметить из графиков рисунка 1, уже есть. Остается найти третью проекцию на плоскость объемов товаров.

Как показал мой первый опыт публичного представления элементов экономической теории в пространстве [12], значительная часть ученых-экономистов, при ознакомлении с этой публикацией, затрудняется именно в понимании методики таких построений.

Это обстоятельство вынуждает меня более подробно описать методику построения третьей проекции по двум уже имеющимся. Для этого на рисунке 2 мною изображено то самое трехмерное пространство, о котором идет речь. Впрочем, если быть более точным, изображен первый квадрант этого пространства. Все остальные квадранты в данном пространстве просто не существуют. Действительно, разве может быть отрицательным, например, доход? Конечно же, нет! Также не может быть отрицательных цен и доходов.

Значит, по определяющим это пространство осям координат расположены положительные значения дохода, объема товара А и объема товара Б.

Очевидно, что любая точка в этом трехмерном пространстве с декартовыми координатами будет определяться некоторой величиной дохода, некоторой величиной объема товара А и некоторой конкретной величиной объема товара Б. Любая другая фигура в этом трехмерном пространстве также будет определяться набором трех указанных значений на осях пространства. Естественно, что если рассматривать другие координаты, например, полярные, то координаты любой точки будут в них определяться по-другому.

Легко убедиться также и в том, что это трехмерное декартово пространство действительно составляют указанные три ортогональные плоскости. Очевидно также, что именно в первом квадранте трехмерного декартова пространства (там, где все координаты не отрицательны) и находится кривая совместного распределения объемов товаров в зависимости от доходов потребителя.

Рисунок 2. Пространство "доход потребителя - объем товара А - объем товара Б"

Меня сейчас интересует возможность изучения проекции кривой, находящейся в данном пространстве, на плоскость объемов товаров.

Сама кривая, как легко догадаться, имеет очень сложный нелинейный характер и добиться ее точного изображения на рисунке 2 очень сложно. Да это и не особенно нужно - в распоряжении имеются две проекции данной кривой, и по ним следует построить третью проекцию. Этого можно добиться, воспользовавшись процедурой построения эпюров, которая была показана в предыдущем параграфе. Как и в примере параграфа 2.3 вновь необходимо представить себе, что одна из осей пространства как бы разрезана вдоль и пополам и все три ортогональные плоскости развернуты на одной плоскости. Вообще-то таким образом можно <разрезать> любую из осей пространства. Но следует вспомнить, что в распоряжении имеются проекции кривой на две плоскости <объемы доход>. Единственная из осей пространства, встречающаяся на этих проекциях дважды, - это ось доходов. Следовательно, она уже <разрезана> и пространство следует на эпюре представлять так, как это показано на рисунке 3.

Таким образом, в данном случае оказывается достаточно легко использовать процедуру построения эпюров для того, чтобы найти проекцию кривой на плоскость объемов. Для этого в первом квадранте рисунка 3 необходимо изобразить проекцию равновесной кривой товара А на плоскость доход-объем, а в третьем квадранте - проекцию равновесной кривой товара Б на плоскость доход-объем.

Если сейчас я сразу же изображу проекции рисунка 1 на эпюре, последующие построения и выводы не для каждого читателя будут понятными. Поэтому в данном случае следует использовать процедуру изучения проблемы по принципу <от простого к сложному>.

Рисунок 3. Разворот на плоскость пространства "доход потребителя - объем товара А - объем товара Б" (первый этап построения эпюра)

Самый простой случай в данной ситуации - когда указанные две проекции на плоскости <объемы-доход> одинаковы. Я уже указывал выше на то, что этот случай маловероятен, тем не менее удобнее всего начинать именно с него. Действительно, одному и тому же значению дохода соответствует одно и то же значение объема как на проекции в первом квадранте, так и на проекции в третьем квадранте. Это, в свою очередь, означает, что на проекции кривой во втором квадранте, координаты которого определяются значениями двух объемов, каждая точка проекции будет характеризоваться координатами, равными друг другу. Товар А начинает потребляться при том же доходе, что и товар Б; объемы максимального потребления товара А равны объему максимального потребления товара Б при одной и той же величине дохода; объемы рационального потребления у них также равны друг другу и тому подобное. По сути, во втором квадранте будет получено множество пар точек, координаты которых равны, например, (2;2), (5;5), (10;10) и т.п.

Таким образом, проекция кривой на плоскость "объем товара А - объем товара Б" будет представлять собой отрезок прямой линии, выходящий из начала координат под углом в 45 градусов. Причем, с ростом дохода линия начнет увеличиваться от нулевой точки к точке максимального значения, а затем, по той же самой траектории вернется в точку, координаты которой равны рациональным объемам потребления.

Рисунок 4. Эпюр кривой совместного распределения товаров (невероятный случай)

Описанный эпюр представлен на графике рисунка 4. На нем пунктиром показано построение наиболее характерных точек проекции кривой на плоскость объемов. Точка, обозначенная словом "max" характеризует максимальные значения объемов. Первоначальный участок кривой находится между нулевой точкой (начало координат) и этой точкой. С дальнейшим увеличением дохода проекция кривой на плоскость объемов будет представлена отрезком от точки "max" до точки "rat", которая характеризует рациональный объем потребления.