Иногда для определения твердости используют подручные «эталоны», хотя они и неточны:
Плотность минералов изменяется от 0,8–0,9 (у природных кристаллических углеводородов) до 22,7 г/см3 (у осмистого иридия).
Плотность определяется формулой p = m/V, где m – масса тела (m=F/g), V – объем.
При макроскопическом определении минералов она оценивается приблизительным сравнением в руке, на основании чего минерал можно отнести к одной из условных групп плотности:
Преобладают минералы с плотностью 2,5–4,0 г/см3.
Плотность минералов возрастает:
Минералы переменного химического состава имеют непостоянную плотность.
Минералы обладают и другими свойствами, такими как магнитность, люминесценция, ковкость, хрупкость, упругость, радиоактивность, растворимость и др.
Форма кристаллов
Облик кристаллов (форма) – это общий вид кристалла. Исходя из того, что любое тело в пространстве имеет три измерения, выделяют следующие основные типы форм кристаллов:
Широко распространены и переходные между этими основными типами формы:
Кроме того, существуют сложные формы кристаллов, например кристаллические дендриты.
Габитус кристаллов– более строгий термин, определяющий облик кристалла по доминирующим на нем граням и соотношению размеров кристалла в трех его измерениях.
Физические свойства минералов.
Физические свойства минералов имеют большое значение не только для их использования, но и для диагности (определения). Они зависят от химического состава и типа кристаллической структуры. Физические свойства могут представлять собой скалярную величину, т.е постоянны во всех направлениях кристаллической решетки, или быть векторными. К последним, могут у отдельных минералов и их агрегатов, относится твердость, спайность, оптические свойства.
Плотность.
Плотность минералов измеряется в граммах на см3 (г/см3) и в значениях, у разных минералов, колеблется от 1 (жидкие битумы) до 23 (осмистый иридий). Оснавная масса минералов имеет плотность от 2,5 до 3,5, что определяет среднюю плотность земной коры в 2,7 - 2,8 г/см3.
Минералы по плотности условно можно разделить на три группы:
Некоторые минералы легко узнаются по большой плотности (барит - 4,5, церрусит - 6,5). Минералы, содержащие тяжелые металлы, имеют большую плотность. Наибольшую плотность в мире минералов имеют самородные элементы - медь, серебро, золото, минералы группы платины.
В минералах одного и того же состава плотность определяется характером упаковки атомов в структурной ячейке кристалла. Наиболее яркие примеры: алмаз (3,5) и графит (2,2) - оба образованы из одного и того же вещества - углерода, но имеют различные кристаллические структуры. Другой пример: кальцит, имеет состав Ca[CO3], плотность 2,6 - 2,8 и арагонит, того же состава, но уже плотностью 2,9 - 3.0 г/см3.
Для минералов, представляющих изоморфные ряды (структурное замещение атомов), увеличение или уменьшение плотности пропорционально изменению химического состава. Пример: в изоморфном ряду оливинов от форстерита Mg[SiO4] до фаялита Fe[SiO4] плотность увеличивается от 3,20 до 4, 35 г/см3.
Удельные веса (плотность) минералов определяются в основном двумя способами:
Методику исследования плотности этими методами опишем в отдельной статье.
Удельный вес мелких зернышек минерала определяется с помощью так называемого пикнометра или тяжелых жидкостей и весов Вестфаля, описываемых в специальных руководствах.
Существует еще несколько менее распространенных методов:
Зная химический состав минерала можно математически вычислить его плотность по формуле:
где P - плотность в г/см3; AW - сумма атомных масс атомов в элементарной ячейке и V – объем элементарной ячейки в нм3. Коэффициент 1,6602 х 10-24 (значение, обратное числу Авогадро) представляет собой единицу атомной массы, выраженную в граммах, а для перевода объема ячейки в см3 необходимо ее объем в нм3 умножить на 10-21.
Для иллюстрации рассчитаем плотность галита; его ячейка содержит 4NaCl и представляет собой кубическую элементарную ячейку с а = 0,564 нм:
Такой расчет часто полезен для проверки результатов химического анализа минералов, с одной стороны, и результатов измерений плотности и размера элементарной ячейки – с другой.Спайность.
Спайность – способность минерала раскалываться при ударе или другом механическом воздействии по определенным кристаллографическим плоскостям.
Спайность связана со структурой кристалла и характером атомных связей. Вдоль плоскостей спайности силы связи оказываются более слабыми, чем вдоль других направлений. Плоскости спайности всегда обладают высокой плотностью атомов и во всех случаях параллельны возможным граням кристалла. Так, спайность пироксенов и амфиболов также непосредственно связана с их структурой, которая содержит цепочки кремнекислородных тетраэдров. Как видно из рисунков (рис.11.31 и 11.41) спайность возникает по плоскостям между цепочками.
Спайность выявляют, прослеживая регулярные системы трещин в прозрачных минералах, таких как флюорит или кальцит, либо ровные отражающие плоскости, образующиеся при раскалывании кристаллов, что наблюдается у полевых шпатов, пироксенов и слюд. Следы плоскостей спайности играют важную роль определяющих направлений при оптическом изучении ксеноморфных зерен под микроскопом, не имеющих хорошо выраженных граней.
Степень совершенства проявления спайности исследуемого минерала определяется путем ее сопоставления с данными следующей 5-ступенчатой шкалы:
При раскалывании минералов, лишенных спайности или обладающих плохой спайностью, возникают незакономерные поверхности излома, который по внешнему облику характеризуется как:
При обработке камня наличие спайности облегчает получение плоских поверхностей вдоль ее плоскостей, но затрудняет шлифовку и полировку других плоскостей, поскольку при обработке могут возникать трещины спайности. Кроме того, спайность может стать причиной сколов минералов в процессе их использования.
Твердость.
Под твердостью минерала понимается его сопротивление механическому воздействию более прочного тела. Твердость минерала является важным диагностическим признаком.