Смекни!
smekni.com

Характеристика флюорита как нерудного полезного ископаемого (стр. 2 из 2)

Месторождение Пьянчиано в Италии - уникальный объект песчано-глинисто-флюоритовых руд (15,3 млн т руды с содержанием тонкозернистого флюорита 35-44%) в слабо литифицированных озерных пирокластических отложениях вулкана Сабатини.

Грейзеновые месторождения флюоритовых руд представляют собой крупные промышленные источники флюорита (плавикового шпата). Руды мусковит (турмалин)- и мусковит-топаз- флюоритовые с карбонатами. Они в виде залежей неправильной формы, трубообразных тел и прожилковых зон локализуются в надапикальной части или в экзоконтакте интрузий субщелочных и лейкократовых гранитов нередко литий-фтористого геохимического типа, замещая карбонатные породы и скарны. Крупные рудные поля характеризуются переходами от слюдисто-флюоритовой к полиметаллической и другой минерализации. В бывшем CCCP — Вознесенское месторождение (Приморье), Солнечное (Казахстан), Шабрезское (Средняя Азия), за рубежом — Лост-Ривер и Кемп-Крик (США).

Карбонатитовые месторождения флюоритовых руд повсеместно ассоциируют с вулкано-плутоническими массивами щелочных ультраосновных, щёлочно-основных и средних щелочных пород. Карбонатиты образуют в этих массивах штоки, кольцевые дайки, трубки, линейные тела. Нередко флюоритоносные карбонатиты сопровождаются гидротермальными жилами, удалёнными от массивов магматических пород на расстояние до 10-18 км. На месторождениях иногда насчитываются десятки рудных тел длиной по простиранию более 1 км, по падению до 300 м при мощности 50-90 м. Оруденение редкоземельное и плавиково-шпатовое. Содержание флюорита в рудах невысокое, но этот тип оруденения весьма перспективен (месторождения Большетагнинское в CCCP, Амба-Донгар в Индии, Окорузу в Намибии, Маумтеч-Пасс, Айрон-Хилл в США, Альнё в Швеции, Мату-Прету в Бразилии и др.).

Пегматитовые месторождения флюоритовых руд, как правило, мелкие и представляют промышленный интерес только с целью извлечения кристаллов природного оптического флюорита. Пегматитовые тела полнодифференцированные, близкие к изометрическим, реже дайко-, трубообразной или неправильной формам. Они размещаются в материнских интрузиях или во вмещающих породах. Флюорит встречается в виде друз, отдельных кристаллов. Обычно с ним ассоциируют горный хрусталь, морион и другие минералы. В США известны небольшие месторождения Сноубёрд, Кристалл-Маунтинс, содержащие почти мономинеральный кристаллический флюорит.

Осадочные месторождения флюоритовых руд коры выветривания сложены различным по размерам плащеобразными развалами "флюоритового гравия". Среди руд различают обломочные и остаточные, которые, в свою очередь, относятся к элювиально-делювиальным или к делювиально-пролювиальным. В процессе выветривания происходит обогащение руд флюоритом. Поэтому продуктивные остаточные залежи могут образовываться над непромышленными коренными источниками. Коры выветривания развиты на Солнечном и Покрово-Киреевском месторождениях в CCCP, на месторождениях рудного района Иллинойс-Кентукки в США и др. Известны гидротермально-осадочные месторождения флюоритовых руд в Италии и Китае.

Промышленное использование

Флюорит — исключительно ценный материал, используемый в ряде отраслей промышленности (оптическая, химическая, металлургическая и др.). Кроме того, это удивительно красивый минерал: вспомним, что древние рудокопы его называли «рудным цветком». Флюорит дублировал различные драгоценные камни: топаз, рубин, сапфир, аметист и др. Из него изготавливали вазы и другие камнерезные изделия, в основном на это шли голубые и пурпурные полосчатые разновидности из Дербишира (Англия), названные «Блу Джон». Эти изделия украшают многие минералогические музеи мира. Несмотря на сравнительную мягкость и совершенную спайность, в настоящее время спрос на декоративно-поделочный флюорит возрос. Он применяется в качестве поделочного материала при художественном оформлении интерьеров помещений, а также в виде вставок, в том числе ограненных, в ювелирных изделиях, исключающих постоянное трение — кулонах, серьгах. Мономинералы, друзы, полированные пластины флюорита используются как коллекционный материал.

Более половины всего флюорита расходуется в химической промышленности для производства плавиковой кислоты (HF), из которой получают фторированные органические и неорганические вещества, а также искусственный криолит для нужд алюминиевой промышленности. Химический флюорит используется для получения плавиковой кислоты (HF) путем его реакции с серной кислотой: CaF2 + H2SO4 → 2HF + CaSO4

Плавиковая кислота является исходным сырьем в химической промышленности для получения самых различных органических и неорганических фторсодержащих химических соединений (фторуглеродов, фторполимеров и др.), элементарного фтора, синтетического криолита (Na3AlF6), которые, в свою очередь, широко используются для изготовления высокооктанового топлива, всевозможных растворителей, аэрозольных препаратов, хладореагентов, полимерных материалов, в ядерной технике. Синтетический криолит является незаменимым расплавным электролитом, используемым для растворения глинозема с последующим электролитическим извлечением из раствора металлического алюминия. Плавиковая кислота используется также для травления стекла.

Второй крупнейший потребитель флюорита – черная металлургия, где он используется как флюс в плавильных печах. Металлургический флюорит необходим как флюсовая добавка при производстве чугуна и стали; его присутствие в шихте не только понижает температуру плавления, но и разжижает шлаки, облегчая их отделение от расплавленного металла. Для производства 1 т мартеновской стали требуется 1,6 кг плавика, электростали - 4 кг, кислородно-конверторной стали - 6 кг.

В керамической промышленности флюорит используется при варке белых или окрашенных кварцевых стекол (ускоряется процесс варки), плавке цинка, в производстве стеклянного волокна, для получения эмалей как покрытий металлов, армирования стержней для электродуговой сварки (повышается прочность и качество сварочного шва), получения металлического магния, его соединений, элементарного кальция и для других целей.

Прозрачные бесцветные разновидности кристаллов флюорита применяются в оптике. Из оптического флюорита изготовляют всевозможные линзы, призмы, окна в микроскопах, спектрографах и др. оптико-спектральных приборах; он используется для изготовления светоделительных и светопреломляющих оптических элементов, в акустических устройствах для переработки радиосигналов и т.п. Бездефектные и бесцветные кристаллы оптического флюорита в поперечнике должны превышать 10 мм, а получаемые из них моноблоки должны иметь размеры 6x6x5 мм, либо 10x10x3 мм. Пластинки оптического флюорита должны пропускать в ультрафиолетовой области не менее 80% света. Поскольку природные кристаллы оптического флюорита исключительно редки, в ряде стран налажено выращивание их синтетических аналогов путем плавки природного крупнокристаллического флюорита. К последнему предъявляются очень жесткие требования: содержание CaF2 - не менее 97-99%, отсутствие видимых включений минералов и горных пород, пленок гидроксидов железа.

В фотографии флюорит позволяет преодолеть теоретический предел, налагаемый оптическим стеклом, и добиться практически идеальной коррекции хроматических аберраций. Флюорит обладает исключительными характеристиками, недостижимыми для оптического стекла - низким коэффициентом преломления и низкой дисперсией. Более того, дисперсионные характеристики флюорита почти совпадают с характеристиками оптического стекла при длинах волн в диапазоне от красного до зеленого света, но существенно отличаются для длин волн в диапазоне от зеленого до синего (такая характеристика называется необыкновенной парциальной дисперсией). Использование этих особых свойств позволяет значительно повысить качество изображения. Оптический флюорит в годы Второй мировой войны был стратегическим сырьем, необходимым для изготовления приборов ночного видения.

Кристаллы флюорита с примесями редкоземельных элементов, а также с железом могут быть применены в квантовых генераторах света.

Мировые запасы и добыча.

Ежегодно в мире получают около 4,5 млн т концентрата плавикового шпата (на 2004 г). Ведущая страна по его производству - Китай (свыше 2,5 млн т). Следом идут Мексика (почти 0,6 млн т), Марокко и Монголия, а также Италия, Испания, Россия, Франция и Бразилия. Суммарное производство концентрата в этих десяти странах составляет более 92% от мирового. Остальная часть приходится на Великобританию, Германию, Кению, Намибию и другие страны.

По общим запасам собственно флюоритовых руд Россия занимает четвертое место в мире (после Мексики, ЮАР и Китая), а по подтвержденным – третье (после ЮАР и Китая). Между тем, потребности нашей страны в плавиковом шпате за счет собственных сырьевых источников удовлетворяются далеко не полностью. Особо напряженное положение на протяжении многих лет сохраняется по «кусковому» металлургических сортов, дефицит которого составляет 72-75% от необходимого количества. Наряду с этим, Россия еще уступает развитым зарубежным странам по качеству плавиковошпатового сырья, что снижает конкурентоспособность его на внутреннем рынке.

Несмотря на наличие в начале прошлого века сведений о флюоритовых месторождениях России, их планомерное изучение началось в двадцатые годы. У истоков формирования плавиковошпатовой подотрасли стоял ВИМС (Всесоюзный институт минерального сырья).

Содержание CaF2 в промышленных рудах колеблется в очень широком диапазоне: среди них различают богатые (более 50%), средние (35-50%) и рядовые (до 35%); начинается освоение низкосортных руд с концентрацией CaF2 15-30%. В большинстве случаев плавикошпатовые руды обогащаются путем ручной либо автоматизированной разборки (ФК - флюоритовый концентрат кусковый), а также получением флотационного (ФФ) или гравитационного (ФГ) концентратов и их доводкой магнитными, электрическими и другими способами. Обогатимость определяется главным образом минеральным составом руд. По этому признаку выделяют флюоритовые мономинеральные, кварц-флюоритовые, сульфидно-флюоритовые, кальцит-флюоритовые, барит-флюоритовые и барит-кальцит-флюоритовые руды. Последние три типа труднообогатимы.

Источники

1. Бетехтин А. Г. Курс минералогии. Изд-во Госгеолтехиздат, М.,1956;

2. Геология и генезис флюоритовых месторождений / Под ред. А.Д.Щеглова. Владивосток, 1986. 180 с.;

3. Самсонов Я.П., Савельев А.К. Геология месторождений фторсодержащего сырья. М., 1980. 216 с.;

4. gefun.web.ru, Н.И.Ерёмин. Неметаллические полезные ископаемые.Изд-во Московского Университета, М., 2004.