Нейтронный каротаж проводится при помощи скважинного прибора, содержащего источник нейтронов и расположенный на некотором расстоянии от него детектор гамма-излучения или нейтронов (см. рис..). Это расстояние, отсчитанное до середины детектора, называют длиной зонда.
Источником нейтронов является помещенная в ампулу смесь порошкообразного бериллия с радиоактивным элементом, обычно полонием. Нейтроны образуются в результате взаимодействия ядер атомов бериллия 49Ве с альфа-частицами, испускаемыми полонием.
Форма кривых НК определяется следующими факторами: характером распределения по стволу скважины потока излучения, регистрируемого приборами; электрической инерционностью аппаратуры, возрастающей с увеличением постоянной времени интегрирующей ячейки τ и скорости перемещения прибора по скважине.
При ντ =0 (точечные замеры, нет искажающего влияния интегрирующей ячейки) кривая симметрична относительно середины пласта.
При ντ>0 кривая становится асимметричной относительно середины пласта, растягиваясь в направлении движения прибора (снизу вверх). Амплитуда кривой против пласта начинает снижаться при большей мощности пласта. С увеличением параметра ντ отмеченные искажения кривой выражаются все более резко. Границы пласта отбиваются по началу крутого подъема и началу крутого спада кривой.
Акустическим каротажем называют методы определения упругих свойств горных пород, слагающих разрезы скважин, по наблюдениям за распространением в них упругих волн.
В отличие от сейсмического каротажа, в котором для получения средней скорости распространения упругих колебаний в мощных пластах (от 20 м и более) используют частоты порядка 20 - 100 Гц, при акустическом каротаже определяют интервальную или пластовую скорость для маломощных пластов (от 0,5 м и более) с использованием частот порядка 5 - 100 кГц.
Чтобы получить представление о принципе скважинных измерений при акустическом каротаже, рассмотрим распространение упругих волн от сферического излучателя И в скважине постоянного диаметра, заполненной глинистым раствором и пересекающей пласт неограниченной мощности. Приемник П упругих колебаний находится на расстоянии L от излучателя на оси скважины. Наблюдается следующая картина. При возбуждении упругих колебаний от излучателя И по глинистому раствору распространяется продольная упругая волна Р1 со сферическим фронтом распространения и скоростью υ1 Достигнув стенки скважины, прямая волна Р1 образует вторичные волны - отраженную продольную Р11 и проходящие - продольную Р12 и обменную поперечную Р1S2 волны. У проходящих вторичных волн скорость распространения продольной волны υр2, больше, чем поперечной υs2( υp2 > υs2). Фронт прямой продольной волны Р1 образует со стенкой скважины критический угол i(sin i = υp2/ υp2 ) в результате чего проходящие волны становятся перпендикулярными к границе раздела скважина - плавт (случай преломления, называемый полным внутренним отражением) и начинает распространяться вдоль стенки скважины. Скользя вдоль стенки скважины проходящие волны Р12 и Р1S2 излучают энергию в скважину в виде головных продольных Р121 и поперечных Р1S2P1 волн, а также волн типа Лэмба - Стоунли (L - St) (распространяющихся в жидкости, заполняющей скважину, и в горной породе в прискважинном слое).
Следовательно, от излучателя И к приемнику в условиях скважины распространяются головная продольная волна Р121 головная поперечная волна P1S2P1, волна Лэмба - Стоунли (L - St) и прямая продольная волна Р1 (отраженная волна Р11 обычно не доходит до приемника из-за малой ее энергии) со следующим соотношением скоростей: υp2 > υs2 >υL-St > υp1. В реальных условиях волновая картина имеет более сложный вид.
1. Л. И. Померанц, М. Т. Бондаренко «Гофизические методы исследования нефтяных и газовых скважин». - М.: Недра, 1981 г. - 376 с.
2. В. М. Добрынин, Б. Ю. Вендельштейн, Р. А. Резванов «Промысловая геофизика». М.: Недра, 1986. -342 с.
3. http://ru.wikipedia.org/wiki/Скважинная_геофизика