3. Формирование минералогического разнообразия земной коры
Земная кора слагается природными химическими соединениями — минералами, количество видов которых немногим превышает 2 тыс. Ограниченность природных химических соединений по сравнению со значительно большим количеством искусственных соединений обусловлена многими причинами, главной из которых является очень неравномерное содержание разных химических элементов в земной коре. Диапазон среднего содержания разных химических элементов достигает шести математических порядков.
Наибольшее количество минеральных видов образуют элементы, содержащиеся в земной коре в наибольшем количестве. К ним относятся кислород, кремний, алюминий, железо, кальций, магний, калий, натрий. Эти элементы образуют группу соединений, массы которых в наибольшем количестве выплавлялись из мантии.
Наряду с ними значительные количества минералов образуют такие элементы, как сера, мышьяк, сурьма, медь, свинец, цинк и некоторые другие металлы, которые активно выносились в процессе дегазации вещества мантии.
Таблица 7
Образование минералов при основных процессах минералообразования
Процессы минералообразования | Минералы, образующиеся преимущественно при данном процессе, в % к общему количеству минералов |
Магматизм | 8 |
Пегматитообразование | 10 |
Пневматолитово-гидротермальная деятельность | 28 |
Гипергенез и литогенез | 45 |
Метаморфизм | 9 |
Если рассматривать разнообразие минералообразования при различных эндогенных процессах, то наибольшее количество минеральных видов образуется при процессах, которые протекают при участии продуктов дегазации. Минералы, образующиеся при пневматолитово-гидротермальных и пегматитовых процессах, по подсчетам известного украинского минералога Е.К. Лазаренко, составляют около 30% всех минеральных видов. Еще большее количество минеральных веществ возникает при процессах гипергенеза и осадкообразования, в которых под геохимическим контролем суммарного эффекта жизнедеятельности организмов образуются химические соединения дегазированных элементов, поступивших в атмосферу и гидросферу (табл. 7).
Определенные закономерности обнаруживаются в разнообразии и распределении масс минералов по классам. Отдельные данные приводились при описании минеральных групп, общая их сводка представлена в таблице 8.
Данные этой таблицы позволяют, прежде всего, отметить наиболее многочисленные классы. Несмотря на расхождения в результатах расчетов разных авторов, совершенно очевидно, что наибольшее количество минералов характерно для силикатов. Весьма разнообразен состав класса фосфатов и их аналогов, которые занимают второе место по количеству минералов (17,7%— 16,4%), а также класса сульфидов и им подобных соединений (9,4—13,0%), оксидов и гидроксилов (9,4—12,5%), сульфатов (9,0—12,2%). Состав других классов менее многочислен и составляет несколько процентов или даже доли процента, как, например, минералы класса хроматов.
Таблица 8
Соотношение между отдельными классами минералов и их содержанием в земной коре
Классы минералов | Минералы | Содержание в земной коре(вес, в %) | ||||
количество | в % к общему количеству минералов | |||||
I1 | II2 | I | II | I | II | |
Самородные элементыСульфиды и им подобные соединенияГалогенидыОксиды и гидроксидыСиликатыСульфатыФосфаты, арсенаты, ванадатыКарбонатыБоратыВольфраматы и молибдатыХроматыНитратыОрганические соединения | 50195861873751352666742145870 | 90200100200800260350804015не учтены | 3,3013,005,7012,5025,009,0017,704,502,801,000,300,504,70 | 4,29,44,79,437,412,216,43,71,90,7 | 0,101,150,5017,0075,000,500,701,703,35 | 0,100,25незначит.17,0080,000,100,701,70назначит.«««« |
Всего | 1500 2135 100,0 100,0 100,0 99,85 | |||||
I1 — данные Е. К. Лазаренко, 1963II2 данные Н. И. Сафронова и Б. А. Гаврусевича, 1968 |
Многочисленность минералов того или иного класса не обязательно означает, что эти минералы составляют значительную часть массы земной коры. Хотя наиболее разнообразный видами класс силикатов и преобладает в земной коре, но второй по многочисленности минералов класс фосфатов и их аналогов составляет менее процента массы литосферы (0,7%). Близкие по численности видов классы сульфидов и оксидов резко различаются по своему весовому содержанию в земной коре: первые находятся в количестве 0,15% (по В.И. Вернадскому), вторые — 17% массы коры. Следует отметить, что значения масс минералов в земной коре точно не установлены и определяются разными учеными неодинаковыми величинами. Так, даже для группы преобладающих минералов — силикатов — рассчитаны сильно различающиеся значения. Американский геохимик Г. Вашингтон (1925) определил массу силикатов в земной коре в 63%, В.И. Вернадский (1937) - в 85%, А.Е. Ферсман (1934) - в 74,5%, Е.К. Лазаренко (1963) — в 75%, Б.А. Гаврусевич и Н.И. Сафронов (1968) - в 80%, А.Б. Ронов и А.А. Ярошевский (1967) - в 83%. Последняя цифра, по-видимому, наиболее достоверна.
В целом можно считать, что преобладающую часть массы земной коры составляют силикаты (включая кварц) и отчасти минералы класса оксидов и гидроксилов.
Образование массы представителей некоторых классов связано преимущественно с одним определенным процессом минералообразования. Как показывают данные Е.К. Лазаренко, большая часть минералов класса сульфидов (89%) имеет пневматолитово-гидротермалыгое происхождение и лишь 5% возникают при литогенезе. Вольфрамиты и молибдаты поровну делятся между гипергенным и пневматолитово-гидротермальным генезисом. Для некоторых классов характерно возникновение преобладающего количества минеральных видов при процессах гипергенного минералообразования. Таковы сульфаты, фосфаты и им близкие соединения, нитраты.
Заключение
Представления о земной коре, ее вещественном составе и образовании по мере развития геологии постепенно менялись от наивных представлений о застывшей корке шлака на поверхности огненно-жидкого металлического шара до создания сложных моделей образования земной коры в результате неоднократной переработки аккумуляций легкоплавких и легколетучих веществ, выносимых тепловыми потоками из мантии.
Накопление геологических знаний долгое время происходило двумя почти не связанными между собой путями. С одной стороны, для решения разнообразных практических задач изучались минералы, руды, горные породы, т.е. составные части вещества земной коры. В этом направлении были сделаны важные открытия и накоплен опыт, способствовавший развитию не только минералогии, но и других наук и отраслей человеческой деятельности. Накопленный опыт способствовал становлению минералогии и смежных геологических наук, а также химии и металлургии.
С другой стороны, благодаря наблюдениям натуралистов был собран огромный материал, характеризующий разнообразные геологические процессы: геологическую деятельность морей и рек, ледников и вулканов и т.п. Особое внимание уделялось выявлению процессов образования и возрастному соотношению различных осадков, которые почти сплошь покрывают сушу и с которыми в первую очередь сталкивается в своей работе геолог.
Одновременно исследователи стремились понять процессы образования различных осадков и выяснить их возрастные соотношения. В начале XIX в. знаменитый английский геолог Ч. Лайель показал, что осадки, образованные в отдаленном геологическом прошлом, являются результатом тех же процессов, которые происходят в настоящее время. Немногим ранее его соотечественник У.Смит установил, что относительный геологический возраст изучаемых осадков вне зависимости от их географического нахождения можно определять с помощью окаменелых останков организмов, которые существовали во время отложения данных осадков. Эти фундаментальные открытия явились теоретической основой для развернувшегося изучения геологического строения разных территорий.
В то же время изучались условия залегания горных пород глубинного происхождения. В середине XIX в. был разработан метод изучения плотных горных пород под микроскопом, который открыл недоступный ранее для изучения мир кристаллизационных и метасоматических процессов, происходящих при образовании магматических и метаморфических пород, руд и пневматолитово-гидротермальных образований. Во второй половине XIX в. начинается синтезирование достижений минералогии, петрографии и рудного искусства с результатами изучения геологического строения отдельных регионов мира. На этой основе русскими, американскими, французскими геологами создаются первые гипотезы образования и строения крупных геотектонических элементов земной коры — геосинклиналей, платформ, кристаллических щитов и плит. В 1881 г. австрийский геолог Э. Зюсс вводит в научный лексикон термин «земная кора», а в странах Западной Европы разрабатываются методы изучения земных недр с помощью регистрации скорости распространения сейсмических воли.