В настоящее время выделяют также переходные субконтинентальный и субокеанический тип коры, отвечающие подводной окраине материков. В пределах коры субконтинентального типа сильно сокращается гранитный слой, который замещается толщей осадков, а затем по направлению к ложу Океана начинается уменьшение мощности базальтового слоя. Мощность этой переходной зоны земной коры обычно 15—20 км. Граница между океанической и субконтинентальной корой проходит в пределах материкового склона в интервале глубин 1 —3,5 км.
Хотя кора океанического типа занимает большую площадь, чем континентальная и субконтинентальная, в силу ее небольшой мощности в ней сосредоточен лишь 21% объема земной коры. Сведения об объеме и массе разных типов земной коры приведены в таблице 1.
Таблица 1
Объем, мощность и масса горизонтов разных типов земной коры (составлено по данным А.Б. Ронова и А.Л. Ярошевского. 1976)
Типы коры | Горизонты коры | Объем,млн. км3 | Средняямощность,км | Масса, 1021 кг |
Континентальный | Осадочный Гранитный Базальтовый | 74025203240 | 5,016,921,7 | 1,856,839,39 |
Кора континентов в целом | 6500 | 43,6 | 18,07 | |
Переходная зона | Осадочный Гранитный Базальтовый | 160520860 | 2,58,013,2 | 0,401,412,49 |
Переходная (субконтинентальная) кора в целом | 1540 | 23,7 | 4,30 | |
Океанический | ОсадочныйВулканогенно-осадочныйБазальтовый | 1203601690 | 0,41,25,7 | 0,191,004,90 |
Океаническая кора в целом | 2170 | 7,3 | 6,9 | |
Земная кора в целом | 10210 | 20,0 | 46 |
Земная кора залегает на подкорковом мантийном субстрате и составляет всего 0,7% от массы мантии. В случае малой мощности коры (например, на океаническом ложе) самая верхняя часть мантии будет находиться также в твердом состоянии, обычном для горных пород земной коры. Поэтому, как отмечено выше, наряду с понятием о земной коре как об оболочке с определенными показателями плотности и упругих свойств, имеется понятие о литосфере — каменной оболочке, толще твердого вещества, покрывающего поверхность Земли.
Структуры типов земной коры. Типы земной коры различаются также своими структурами. Для земной коры океанического типа характерны разнообразные структуры. По центральной части дна океанов протягиваются мощные горные системы — срединно-океанические хребты. В осевой части эти хребты рассечены глубокими и узкими рифтовыми долинами с крутыми бортами. Эти образования представляют собой зоны активной тектонической деятельности. Вдоль островных дуг и горных сооружений по окраинам материков располагаются глубоководные желоба. Наряду с этими образованиями имеются глубоководные равнины, занимающие огромные площади.
Столь же неоднородна континентальная земная кора. В ее пределах можно выделить молодые горноскладчатые сооружения, где мощность коры в целом и каждого из ее горизонтов сильно возрастает. Выделяются также площади, где кристаллические горные породы гранитного слоя представляют древние складчатые области, выровненные на протяжении длительного геологического времени. Здесь мощность коры значительно меньше. Эти обширные участки континентальной коры называются платформами. Внутри платформ различают щиты — районы, где кристаллический фундамент выходит непосредственно на поверхность, и плиты, кристаллическое основание которых покрыто толщей горизонтально залегающих отложений. Примером щита является территория Финляндии и Карелии (Балтийский щит), в то время как на Восточно-Европейской равнине складчатый фундамент глубоко опущен и перекрыт осадочными отложениями. Средняя мощность осадков на платформах около 1,5 км. Для горноскладчатых сооружений характерна значительно большая мощность толщи осадочных пород, средняя величина которой оценивается в 10 км. Накопление таких мощных отложений достигается длительным постепенным опусканием, прогибанием отдельных участков континентальной коры с последующим их подъемом и складкообразованием. Такие участки называются геосинклиналями. Это наиболее активные зоны континентальной коры. К ним приурочено около 72% всей массы осадочных пород, в то время как на платформах сосредоточено около 28%.
Проявления магматизма на платформах и геосинклиналях резко различается. В периоды прогибания геосинклиналей по глубинным разломам поступает магма основного и ультраосновного состава. В процессе превращения геосинклинали в складчатую область происходит образование и внедрение огромных масс гранитной магмы. Для поздних этапов характерны вулканические излияния лав среднего и кислого состава. На платформах магматические процессы выражены значительно слабее и представлены преимущественно излияниями базальтов или лав щелочно-основного состава.
Среди осадочных пород континентов преобладают глины и глинистые сланцы. На дне океанов увеличивается содержание известковых осадков.
Итак, земная кора состоит из трех слоев. Ее верхний слой сложен осадочными породами и продуктами выветривания. Объем этого слоя составляет около 10% общего объема земной коры. Большая часть вещества находится на континентах и переходной зоне, в пределах океанической коры его не более 22% объема слоя.
В так называемом гранитном слое наиболее распространенными породами являются гранитоиды, гнейсы и кристаллические сланцы. На породы более основного состава приходится около 10% этого горизонта. Это обстоятельство хорошо отражается на среднем химическом составе гранитного слоя. При сопоставлении величин среднего состава обращает на себя внимание ясное различие этого слоя и осадочной толщи (табл. 2).Таблица 2
Химический состав земной коры (в весовых процентах)
(по данным Л.Б. Ронова и А.Л. Ярошевского, 1976)
Компоненты | Среднийсоставосадочнойтолщи | Среднийсоставгранитногослоя | Средний составбазальтового слоя | |
континентов | океанов | |||
SiO2TiO2A12O3Fe2O3FeOMnOMgOCaONa2OK2OP205CорганическийCO2SO3ClH2O+ | 44,030,5310,672,821,890,242,7915,911,501,910,130,6212,380,500,273,59 | 63,080,5415,382,243,600,092,963,792,712,890,160,050,810,100,211,46 | 54,840,8414,282,424,250,166,378,092,341,320,160,020,370,030,021,40 | 49,431,4915,502,477,970,187,8911,232,600,240,23----0.69 |
* — за исключением включений эффузивных пород |
Состав базальтового слоя в двух основных типах земной коры неодинаков. На континентах эта толща характеризуется разнообразием горных пород. Здесь присутствуют глубоко метаморфизованные и магматические породы основного и даже кислого состава. Основные породы составляют около 70% всего объема этого слоя. Базальтовый слой океанической коры значительно более однороден. Преобладающим типом пород являются так называемые толеитовые базальты, отличающиеся от континентальных базальтов низким содержанием калия, рубидия, стронция, бария, урана, тория, циркония и высоким отношением Na/K. Это связано с меньшей интенсивностью процессов дифференциации при их вплавлении из мантии. В глубоких рифовых разломах выходят ультраосновные породы верхней мантии.
Распространенность горных пород в земной коре, сгруппированных для определения соотношения их объема и масс, приведена в таблице 3.
Таблица 3
Распространенность горных пород в земной коре
(по А.Б. Ронову и А.Л. Ярошевскому, 1976)
№ п/п | Группы пород | Распространенность, % объема земной коры | Масса, 1018т |
1234567891011 | Пески и песчаные породыГлины, глинистые сланцы, кремнистые породыКарбонатыСоленосные отложенияГранитоиды, гранитогнейсы, кислые эффузивы и их метаморфические эквивалентыГаббро, базальты и их метаморфические эквивалентыДуниты, перидотиты, серпентинитыМетапесчаникиПарагнейсы и кристаллические сланцыМетаморфизованные карбонатные породыЖелезистые породы | 1,834,482,790,0920,8650,340,071,7416,910,690,17 | 0,431,140,710,025,6815,000,020,474,740,180,06 |
Сумма | 100,00 | 28,46 |
2. Эволюция химического состава земной коры
Проблема образования существующей структуры земной коры имеет не только фундаментальное теоретическое значение. Познание процессов, формирующих земную кору, одновременно означает выяснение закономерностей образования и размещения промышленных месторождений полезных ископаемых. Поэтому над изучением этих процессов работают крупные научные коллективы многих стран.
Экспериментальные исследования, изучение горных пород на поверхности материков и на дне океанов, результаты глубокого бурения позволили разработать представление о радиально направленном выправлении и дегазации вещества земной коры из мантии. Вещество мантии до сих пор непосредственно не подвергалось химическому анализу, так как достать его пока еще технически невозможно. Однако есть основания считать, что состав мантии отвечает составу каменных метеоритов (хондритов).
Результаты анализов показывают, что в них содержатся определенные количества некоторых химических элементов, образующих относительно легкоплавкие соединения, а также элементов, входящих в состав газов и воды (табл. 4).
Таблица 4
Содержание в хондритах химических элементов и соединений, образующих пары и газы
(по А.П. Виноградову, 1964)
Элементы соединений | Содержание, в весовых процентах | Состав газов |
SН20CNFС1BrВJ | 1,80,54*1022*1032,8*10-37*10-35*10-54*10-54*10-6 | H2S, S02идр.H2O,H2, O2СН4,СО, СO2N2,NH3HFНСlHBrВ (ОН)3, и др.HJ |
Вещество мантии находится в равновесном твердом состоянии в условиях высоких температур и давления. Однако это равновесное состояние будет нарушено, если внешние условия изменятся, например, понизится давление или повысится температура. Тогда вещество перейдет в расплавленное, жидкое состояние. Такое явление вполне вероятно, если внутри мантии возникнет очаг сильного разогревания. Причиной его может служить энергия радиоактивного распада. Расплавленная масса, содержащая источник тепловой энергии, будет перемещаться в радиальном направлении к поверхности Земли, проплавляя при своем движении вещество мантии. При этом должна происходить закономерная дифференциация этого вещества.