Смекни!
smekni.com

Проект создания плановых инженерно-геодезических сетей (стр. 2 из 5)

1.1 Триангуляция

Триангуляция (от лат. triangulum – треугольник) – один из методов создания опорной геодезической сети (рисунок 1).

Рисунок 1 – Триангуляция и трилатерации

Состоит в построении рядов или сетей примыкающих друг к другу треугольников и в определении положения их вершин в избранной системе координат. В каждом треугольнике измеряют все три угла, а одну из его сторон определяют из вычислений путём последовательного решения предыдущих треугольников, начиная от того из них, в котором одна из его сторон получена из измерений. Если сторона треугольника получена из непосредственных измерений, то она называется базисной стороной триангуляции. В рядах или сетях триангуляции для контроля и повышения их точности измеряют большее число базисов или базисных сторон, чем это минимально необходимо.

Принято считать, что метод триангуляции изобрёл и впервые применил В. Снеллиус в 1615–17 гг. при прокладке ряда треугольников в Нидерландах для градусных измерений. Работы по применению метода триангуляции для топографических съёмок в дореволюционной России начались на рубеже 18–19 вв. К началу 20 в. метод триангуляции получил повсеместное распространение.

Триангуляция имеет большое научное и практическое значение. Она служит для: определения фигуры и размеров Земли методом градусных измерений; изучения горизонтальных движений земной коры; обоснования топографических съёмок в различных масштабах и целях; обоснования различных геодезических работ при изыскании, проектировании и строительстве крупных инженерных сооружений, при планировке и строительстве городов и т.д.

При построении триангуляции в государственной геодезической сети (ГГС) исходят из принципа перехода от общего к частному, от крупных треугольников к более мелким. В связи с этим триангуляция подразделяется на классы, отличающиеся точностью измерений и последовательностью их построения. В малых по территории странах триангуляция высшего класса строят в виде сплошных сетей треугольников. В государствах с большой территорией (Россия, Китай, Индия, США, Канада и др.) триангуляцию строят по некоторой схеме и программе.


Рисунок 2 - Государственная триангуляция делится на 4 класса

Государственная триангуляция 1-го класса строится в виде рядов треугольников со сторонами 20–25 км, расположенных примерно вдоль меридианов и параллелей и образующих полигоны с периметром 800–1000 км. Углы треугольников в этих рядах измеряют высокоточными теодолитами, с погрешностью не более ± 0,7". В местах пересечения рядов триангуляции 1-го класса измеряют базисы при помощи мерных проволок, причём погрешность измерения базиса не превышает 1 : 1000000 доли его длины, а выходные стороны базисных сетей определяются с погрешностью около 1 : 300 000. После изобретения высокоточных электрооптических дальномеров стали измерять непосредственно базисные стороны с погрешностью не более 1:400 000.

Пространства внутри полигонов триангуляции 1-го класса покрывают сплошными сетями треугольников 2-го класса со сторонами около 10–20 км, причём углы в них измеряют с той же точностью, как и в 1-ом классе. В сплошной сети триангуляции 2-го класса внутри полигона 1-го класса измеряется также базисная сторона с указанной выше точностью. На концах каждой базисной стороны 1-го и 2-го классов выполняют астрономические определения широты и долготы с погрешностью не более ±0,4", а также азимута с погрешностью около ±0,5". Кроме того, астрономические определения широты и долготы выполняют и на промежуточных пунктах рядов триангуляции 1-го класса через каждые примерно 100 км, а по некоторым особо выделенным рядам и значительно чаще.

На основе рядов и сетей триангуляции 1-го и 2-го классов определяют пункты триангуляции 3-го и 4-го классов, причём их густота зависит от масштаба топографической съёмки. Например, при масштабе съёмки 1:5000 один пункт триангуляции должен приходиться на каждые 20–30 км2. В сетях триангуляции 3-го и 4-го классов погрешности измерения углов не превышают соответственно 1,5" и 2,0".

В практике допускается вместо триангуляции применять метод полигонометрии. При этом ставится условие, чтобы при построении опорной геодезической сети тем и др. методом достигалась одинаковая точность определения положения пунктов земной поверхности.

Вершины треугольников триангуляции. обозначаются на местности деревянными или металлическими вышками высотой от 6 до 55 м в зависимости от условий местности (см. Сигнал геодезический). Пункты триангуляции в целях долговременной их сохранности на местности закрепляются закладкой в грунт особых устройств в виде металлических труб или бетонных монолитов с вделанными в них металлическими марками (см. Центр геодезический), фиксирующими положение точек, для которых даются координаты в соответствующих каталогах.

Координаты пунктов триангуляции определяют из математической обработки рядов или сетей. Построение триангуляции и её математическая обработка приводят к созданию на всей территории страны единой системы координат, позволяющей ставить топографо-геодезические работы в разных частях страны одновременно и независимо друг от друга. При этом обеспечивается соединение этих работ в одно целое и создание единой общегосударственной топографической карты страны в установленном масштабе (таблица 1).

Таблица 1 – Основные характеристики триангуляции

Показатели 1 класс 2 класс 3 класс 4 класс
Длина звена триангуляции 200 - - -
Средняя длина стороны треугольника,км 20-25 7-20 5-8 2-5
Относительная ошибка выходной стороны 1:400000 1:300000 1:200000 1:200000
Приблизительная относительная ошибка стороны в слабом месте 1:350000 1:200000 1:20000 1:70000
Минимальное значение угла треугольника 40˚ 20˚ 20˚ 20˚
Средняя квадратическая ошибка угла ±0,7´´ ±1´´ ±1,5´´ ±2´´

1.2 Трилатерация

Трилатерация – построение на местности примыкающих друг к другу треугольников и измерение длин всех их сторон. Сети трилатерации, создаваемые для решения инженерно – геодезических задач, часто строят в виде свободных сетей, состоящих из отдельных типовых фигур: геодезических четырехугольников, центральных систем или комбинаций с треугольниками. Решаются треугольники по формулам тригонометрии, находятся углы треугольников аналогично вычислениям элементов системы треугольников на рисунке 1.

Широкое распространение сети трилатерации получили при строительстве высокоэтажных зданий, дымовых труб, атомных электростанции. Совершенствование и повышение точности свето- и радиодальномеров увеличивает роль трилатерации, особенно в инженерно-геодезических работах.


1.3 Полигонометрия

Полигонометрия (от греч. polýgonos – многоугольный) – один из методов определения взаимного положения точек земной поверхности для построения опорной геодезической сети служащей основой топографических съёмок, планировки и строительства городов, перенесения проектов инженерных сооружений в натуру и т.п.

Положения пунктов в принятой системе координат определяют методом полигонометрии путём измерения на местности длин линий, последовательно соединяющих эти пункты и образующих полигонометрический ход, и горизонтальных углов между ними. Так, выбрав на местности точки 1, 2, 3, …, n, n + 1 измеряют длины s1, s2,..., sn. линий между ними и углы b2, b3,..., bn между этими линиями (рисунок 3).

Рисунок 3 - Полигонометрия

Как правило, начальную точку 1 полигонометрического хода совмещают с опорным пунктом Рн, который уже имеет известные координаты хн, ун и в котором известен также исходный дирекционный угол aн направления на какую-нибудь смежную точку Р'н. В начальной точке полигонометрического хода, т. е. в пункте Рн, измеряют также примычный угол b1 между первой стороной хода и исходным направлением РнР’н. Тогда дирекционный угол ai стороны i и координаты xi+1, yi+1 пункта i + 1 полигонометрического хода могут быть вычислены по формулам:

ai = aн + åir=1br - i 180° (1)

xi+1 = хн + åir=1srcosar(2)

yi+1 = ун + åir=1srsinar. (3)

Для контроля и оценки точности измерений в полигонометрическом ходе его конечную точку n + 1 совмещают с опорным же пунктом Pk, координаты xk, yk которого известны и в котором известен также дирекционный угол ak направления на смежную точку P'k. Это даёт возможность вычислить т. н. угловую и координатные невязки в полигонометрическом ходе, зависящие от погрешностей измерения длин линий и углов и выражающиеся формулами:

fa = an+1 - ak (4)

fx = xn+1 - xk (5)

fy = yn+1 - yk. (6)

Эти невязки устраняют путём исправления измеренных углов и длин сторон поправками, которые определяют из уравнивания по методу наименьших квадратов.

При значительных размерах территории, на которой должна быть создана опорная геодезическая сеть, прокладываются взаимно пересекающиеся полигонометрические ходы, образующие полигонометрическую сеть (рисунок 4).