Смекни!
smekni.com

Основные сведения по геодезии (стр. 2 из 5)

Способ определения площадей с помощью палетки

Определение площадей малых участков с резко выраженными криволинейными границами рекомендуется производить с помощью квадратной палетки. Палетка представляет собой лист прозрачной основы, на которую нанесена сетка квадратов со сторонами 1-5 мм. Зная длину сторон и масштаб плана, легко вычислить площадь квадрата палетки s.

Для определения площади участка палетку произвольно накладывают на план и подсчитывают число N1 полных квадратов, расположенных внутри контура участка. Затем оценивают «на глаз» число квадратов N2, составляемых из неполных у границ участка. Тогда общая площадь измеряемого участка

Палетки бывают прямолинейные и криволинейные.

К прямолинейным относятся квадратные и параллельные палетки.

К криволинейным относятся гиперболические палетки, представляющие систему гиперболических кривых и применяющиеся для определения площадей простейших геометрических фигур. Однако гиперболические палетки применяются редко, так как они не пригодны для быстрого определения площадей с криволинейными контурами.

Наиболее удобными для пользования и построения являются квадратная и параллельная палетки.

Квадратная палетка представляет сеть взаимно перпендикулярных линий, проведенных через 1-2мм на прозрачном материале. Площадь фигуры определяется простым подсчетом клеток палетки, наложенной на фигуру. Доли клеток, рассекаемых контуром на части, учитываются на глаз.

Для упрощения подсчетов количества клеток проводят утолщенные линии через 0,5см и 1см, чтобы подсчитать клетки группами – в 25 и 100 кв.мм.

Недостатком квадратной палетки является то, что площади долей квадратиков, рассекаемых контуром, берутся на глаз и то что, подсчет целых квадратиков или их долей сопровождался ошибками.

Площадь параллельной палеткой определяется так: накладывают палетку на контур так, чтобы крайние точки разместились посередине между параллельными линиями палетки. Так, весь контур оказывается рассеченным параллельными линиями на трапеции с одинаковыми высотами, причем отрезки параллельных линий внутри контура являются средними линиями трапеций.

При оценке точности определения площадей палетками принимается во внимание, что ими определяют площади криволинейных контуров, так как площадь участка, ограниченного прямыми линиями, быстрее и точнее можно определить графическим способом.

Палетками определяют площади небольших контуров, не превышающих 10 кв.см (с.к.о. или m = 0,03).

Механический способ определения площадей

В инженерной практике для определения площадей достаточно больших участков по планам или картам наиболее часто применяется механический способ, основанный на использовании специального прибора- планиметра. Конструкция планиметра впервые была предложена в 1856 г. одновременно швейцарцем Амслером и нашим соотечественником механиком А. Н. Зарубиным. Из многочисленных конструкций планиметров в настоящее время наибольшее распространение получили полярные планиметры типа ПП- 2К и его модернизированная модель ПП-М.

Допустимая ошибка при этом методе 1/400. В современных условиях применяют четвертый метод – электронный способ. Он связан с картами в электронном виде, т.е. с использованием ПК.


3. Опишите порядок работы при измерении теодолитом горизонтального угла "от нуля" (отсчет по горизонтальному кругу при визировании на опорную точку 00).

(вопрос 9) раздела 1 «Угловые измерения».

Сначала теодолитустанавливают в рабочее положение, т. е. прибор центрируют над вершиной измеряемого угла, приводят ось вращения теодолита в отвесное положение, устанавливают зрительную трубу «по глазу» и «предмету» и готовят отсчетный микроскоп для наблюдений.

Центрирование выполняют при помощи: нитяного отвеса с точностью 3-5 мм, оптического центрира (Т15, Т5 и др.) или зрительной трубы (Т30), направленной объективом вниз, с точностью до 0,5-1 мм. Приближенное центрирование выполняют перемещением штатива, а точное — перемещением теодолита по горизонтальной платформе штатива при открепленном становом винте.

Установка оси вращения теодолита в отвесное положение выполняют путем приведения в нуль-пункт пузырька цилиндрического уровня подъемными винтами. В результате при вращении алидады пузырек уровня не должен отклоняться от нуль-пункта более чем на одно деление уровня. Установка зрительной трубы «по глазу» и «по предмету» позволяет четко видеть штрихи сетки нитей и наблюдаемый предмет. Штрихи лимба и шкала отсчетного микроскопа также должны иметь четкое изображение.

Затем незакрепленную алидаду отводят влево на 30-40° и обратным вращением наводят на визирную цель первого направления так, чтобы она оказалась справа от биссектора (в поле зрения трубы); алидаду закрепляют. Наводящим винтом алидады, только ввинчиванием, биссектор наводят на визирную цель и берут отсчет по оптическому микрометру (если имеется окулярный микрометр, то трижды наводят его биссектор на визирную цель и берут отсчеты). Открепляют алидаду и наводят на 2-е направление так же, как и на 1-е. На этом заканчивают полуприем. Трубу переводят через зенит, по часовой стрелке наводят на 2-е направление, предварительно отведя алидаду влево на 30-40°; наводящим винтом биссектор наводят на визирную цель и берут отсчет по оптическому микрометру. По часовой стрелке алидаду поворачивают на угол, дополняющий измеряемый до 360°, наводят на визирную цель 1-го направления, берут отсчет. Заканчивается прием.

4. В чем сущность гидростатического нивелирования?

(вопрос 9) раздела 1 «Измерение превышений (нивелирование)».

Гидростатическое нивелирование – определение высот точек земной поверхности относительно исходной точки с помощью сообщающихся сосудов с жидкостью.

Гидростатическое нивелирование основано на том, что свободная поверхность жидкости в сообщающихся сосудах находится на одном уровне. Гидростатический нивелир состоит из двух стеклянных трубок, вставленных в рейки с делениями, соединённых резиновым или металлическим шлангом и заполненных жидкостью (вода, спирт, диметилфталат и т.п.). Разность высот определяют по разности уровней жидкости в стеклянных трубках, причём учитывают различие температуры и давления в различных частях жидкости гидростатического нивелира. Погрешности определения разности высот этим методом составляют 1–2 мм. Гидростатическое нивелирование применяют для непрерывного изучения деформаций инженерных сооружений, высокоточного определения разности высот точек, разделённых широкими водными преградами, и др.

Задание 2

Вычисление исходных дирекционных углов линий; решение прямой геодезической задачи.

Задача 1. Вычислить дирекционные углы линий BC и CD, если известны дирекционный угол aAB = 49°40,2’ и измеренные правые по ходу углы b1 = 189°59,2’ и b2 = 159°28,0’ (рис. 1).

Рис

Дирекционные углы вычисляют по правилу: дирекционный угол последующей стороны равен дирекционному углу предыдущей стороны плюс 180° и минус горизонтальный угол, справа по ходу лежащий. Следовательно,

aBC= aAB+ 180° - b1

aCD= aBC+ 180° - b2

Вычисляем в столбик,

aAB------ 49°40,2’

+ 180°

------------

229°40,2’

- 189°59,2’

------------

aBC------ 39°41,0’

+ 180°

------------

219°41,0’

- 159°28,0’

aCD ------ 60°13,0’

Задача 2. Найти координаты xC и yC точки C (рис. 1), если известны координаты xB = -14,02 м и yB = +627,98 м точки B, длина (горизонтальное проложение) dBC =239,14м линии BC и дирекционный угол aBC = 39°41,0’этой линии.

Координаты точки C вычисляются по формулам:

xC = xB + DxBC

DxBC= dBC*cosaBC

yC = yB + DyBC

DyBC = dBC*sinaBC

Таблица

xB+ DxBC -14,02+184,04 yB+ DyBC +627,98+152,70
xC +170,02 yC +780,68

Задание 3

Составление топографического плана строительной площадки.

По данным полевых измерений составить и вычертить топографический план строительной площадки в масштабе 1:2000 с высотой сечения рельефа 1 м.

Работа состоит из следующих этапов: обработка ведомости вычисления координат вершин теодолитного хода; обработка тахеометрического журнала; построение топографического плана.

ИСХОДНЫЕ ДАННЫЕ

1. Для съемки участка на местности между двумя пунктами полигонометрии ПЗ8 и ПЗ19 был проложен теодолитно-высотный ход. В нем измерены длины всех сторон (рис. 2), а на каждой вершине хода – правый по ходу горизонтальный угол и углы наклона на предыдущую и последующую вершины. Результаты измерений горизонтальных углов и линий сведены в таблицу 1. Результаты тригонометрического нивелирования сведены в таблицы 3 и 4.

Рис. 2. Схема теодолитно-высотного хода съемочного обоснования

Таблица 1 . Результаты измерений углов и длин сторон хода

Номеравершин хода Измеренные углы(правые) Длины сторон(горизонтальныепроложения) ,м
°
ПЗ 8 330 59,2 263,02
I 50 58,5
239,21
II 161 20,0
269,80
III 79 02,8
192,98
ПЗ 19 267 08,2

Измерение углов производилось оптическим теодолитом 2Т30 с точностью отсчетов по шкаловому микроскопу 0,5’.