Смекни!
smekni.com

Оптимизация технологических режимов работы скважин механизированного фонда (стр. 6 из 10)

Для добывающих скважин месторождений ООО «РН-Юганскнефтегаз» размер фильтрующей щели вставного забойного фильтра, как показывают данные о гранулометрическом составе песка выносимого из слабосцементированных коллекторов, не должен превышать 0,1 мм.

При оборудовании добывающих скважин вставными фильтрами большое значение имеет правильный подбор диаметра частиц (фракционного состава) вспомогательного фильтрующего материала в зависимости от гранулометрического состава пластового песка. Значительное влияние на эффективность работы фильтров оказывает качество их изготовления: в первую очередь равномерность и постоянство щелевого зазора в проволочной навивке. В настоящее время эта проблема решается путем укладки проволочной навивки в резьбовой профиль, выполняемый на стрингерах корпуса фильтра.

Как показывает опыт эксплуатации забойных фильтров, вынос песка по скважинам при их использовании снижается в 5-10 раз.

Для защиты УЭЦН от механических примесей на Приразломном месторождении применяют шламоуловитель ШУМ, работающий в составе УЭЦН в качестве дополнительной модуль-секции. Устанавливается между входным модулем или газосепаратором и нижней секцией насоса, назначение которого - предотвращать попадание КВЧ и пропанта в насос в процессе эксплуатации УЭЦН. Улавливает взвешенные частицы любых размеров.

Также применяется фильтр МВФ, он работает в составе УЭЦН и выполняет роль входного модуля. Устанавливается между гидрозащитой и нижней секцией насоса. Размер улавливаемых частиц 0,3 мм и более.

Также применяется фильтр ЖНШ, он представляет собойсамоочищающийся щелевой фильтр, работающий в составе УЭЦН, выполняет роль входного модуля. Устанавливается между гидрозащитой и нижней секцией насоса.

Мероприятия по борьбе с образованием АСПО в процессе нефтедобычи

В процессе нефтедобычи возникают осложнения, связанные с выпадением асфальтосмолопарафиновых веществ (АСПВ) в эксплуатационных скважинах и наземных коммуникациях. Это приводит к снижению дебита добывающих скважин, пропускной способности нефтепроводных коммуникаций и другим нежелательным последствиям.

Известно, что асфальтены чаще всего выпадают из нефти с большим содержанием летучих компонентов, относительно малым содержанием углеводородов с цепью более, небольшим содержанием асфальтенов, высоким давлением насыщения, при большой разнице в пластовых давлениях и давлениях насыщения и высокой сжимаемости нефти.

Для удаления АСПО из добывающих скважин месторождения рекомендуется использовать промывки НКТ горячей нефтью с растворенным ингибитором парафиноотложения. Депарафинизацию НКТ теплоносителем предпочтительно осуществлять по прямой схеме, когда горячая нефть подается непосредственно в НКТ. В этом случае потребность в нефти для промывки НКТ скважин, оборудованных ЭЦН, по расчетам составляет до 30 м3 при начальной температуре теплоносителя 100 0С. В случае закачки теплоносителя в затрубное пространство наблюдаются значительные потери тепла в грунт и промывки горячей нефтью становятся малоэффективными. Для повышения эффективности в этом случае необходимо увеличивать температуру теплоносителя свыше 120 0С и его расход более 60-80 м3.

Для удаления АСПО из нефтепроводных коммуникацией рекомендуется очистка трубопровода с помощью термохимических составов.

Наиболее эффективным способом борьбы с АСПО следует признать методы, предупреждающие их отложение. Наиболее целесообразно предусматривать использование этих методов на вновь обустраиваемых скважинах, расположенных в природоохранной зоне, и объектах, к которым затруднен подъезд в течение длительного времени.

Для предотвращения выпадения АСПО повышают дебит скважины до парафинобезопасного, при котором на всей протяженности НКТ из-за увеличения скорости потока температура добываемой пластовой продукции выше температуры ее насыщения парафином. В промысловых условиях это достигается увеличением проницаемости ПЗП обработкой реагентами, либо проведением гидроразрыва пласта. При неизменном дебите увеличения скорости потока можно достичь уменьшением диаметра лифтовых труб. Для предупреждения АСПО возможно использование химических реагентов – ингибиторов.

Определяющим условием предупреждения АСПО с помощью ингибиторов является дозирование их в добываемую нефть в необходимом количестве.

В зарубежной практике ингибирования АСПО в добывающих скважинах широко используется технология, заключающаяся в непрерывной подаче ингибитора расположенным на поверхности дозировочным насосом по дозировочной трубке через специальную нагнетательную муфту, крепящуюся на НКТ ниже интервала начала отложения АСПВ. Данная технология, а также метод с использованием дозаторов, устанавливаемых ниже спуска насоса, наиболее целесообразны для ингибирования АСПО в НКТ эксплуатационных скважин, оборудованных пакерами.

Рекомендуемые мероприятия по борьбе с отложениями АСПВ приведены в таблице 3.2.

Таблица 3.2 - Мероприятия по удалению и предотвращению отложений асфальтосмолопарафиновых веществ

Необходимые мероприятия Объем применения (расход на одну обработку) Периодичность, число обработок в год Используемая техника
Удаление АСПО
1. Обработка горячей нефтью с ингибитором парафиноотложения 30 – 80 м3 по мере необходимости АДП-4-15, ЦА-320, ЦА-320М, ППУ-1200/100, автоцистерны
2. Обработка органическими раствори-телями (нефрасом, бензинорастворителем БР-1, их смесями) 7 м3 1 АДП-4-15, ЦА-320, ЦА-320М, автоцистерны
Предотвращение АСПО
3. Ингибирование АСПО с использова-нием ингибиторов парафиноотложения (СНПХ-7843,СНПХ-7909, Инпар-1, Сонпар 5401) 200 г/т постоянно Для периодического дозирования -ЦА-320, ЦА-320М (Азинмаш); для непрерывного - дозировочные насосы типа НД, установки БР

Мероприятия по подавлению микробиологической зараженности нефтяных пластов и нефтепромысловых объектов

Разработка и эксплуатация нефтяных месторождений с применением методов заводнения продуктивных пластов водами не прошедшими микробиологическую обработку приводит к интенсивному развитию микробиологических процессов.

Микробиологическая составляющая вносит существенный вклад в общий коррозионный процесс. Более 50 % коррозионных повреждений трубопроводов может быть отнесено за счет деятельности микроорганизмов

Помимо биокоррозии, микроорганизмы являются причиной закупоривания нефтяного пласта либо скоплением биомассы бактерий, либо продуктами их метаболизма, в частности, сульфидами, окислами железа, вторичными кальцитами. Причем закупоривание нефтеносных горизонтов происходит как в призабойной зоне, так и в глубине заводняемого пласта, что приводит к существенному снижению нефтеотдачи пластов, уменьшению коэффициента извлечения нефти, вплоть до полной изоляции залежи от водонапорной системы. Бактерии ухудшают качественный состав нефти, потребляя легкие углеводороды и образуя альдегиды, кислоты и другие продукты. Кроме того, жизнедеятельность микроорганизмов приводит к биодеструкции химреагентов, используемых для увеличения нефтеотдачи, в частности, ПАВ и полимеров.

Известно, что микрофлора нефтяных пластов и нефтепромысловых сред характеризуется значительным разнообразием. Однако с практической точки зрения интерес представляет идентификация тех групп бактериальной микрофлоры, жизнедеятельность которых приводит к существенному экономическому ущербу, как, например, к коррозии металла, к повышению вязкости нефтепромысловой среды и другим отрицательным явлениям. Эти последствия вызывает биоценоз сульфатвосстанавливающих (СВБ) и гетеротрофных (ГТБ) бактерий.

Повышенная численность ГТБ в нефтяных пластах свидетельствует о том, что в них сформировался биоценоз с преобладанием аэробных процессов окисления углеводородов нефти. Существенного развития СВБ в нефтяных пластах на данный момент не отмечено, и пласты характеризуются слабым уровнем биозараженности СВБ. Это может быть связано с тем, что высокая температура нефтяных пластов - 97 - 102 0С позволяет развиваться только термофильной бактериальной микрофлоре, численность которой относительно невысока.

Следует, однако, отметить, что присутствие сульфат-анионов в пластовых и речной водах, высокая численность ГТБ в нефтяных пластах, создают предпосылки для дальнейшего развития СВБ в наземных коммуникациях. Это впоследствии может привести к интенсивной биокоррозии наземного нефтепромыслового оборудования.

Для борьбы с бактериальным заражением разработаны физические и химические способы. Наиболее эффективным средством борьбы с микроорганизмами в нефтедобыче в настоящее время является применение химических методов, в частности, использование биоцидов. Их выбор определяется на основе доступности, технологичности, а также активности относительно конкретного типа микроорганизмов. Следует отметить, что микроорганизмы обладают способностью адаптации к применяемым реагентам, что требует постоянного обновления ассортимента биоцидов.

Наибольшую опасность в развитии бактериальной коррозии представляют не планктонные, а прикрепленные к металлической поверхности колонии бактерий, образующие на ней биопленку.

Для защиты нефтепромыслового оборудования от коррозии в условиях бактериального заражения и подавления биоценоза в нефтяном пласте предлагается технология комплексной защиты, заключающаяся в последовательной обработке коррозионно-агрессивных нефтепромысловых сред биоцидом и ингибитором коррозии. Предварительная биоцидная обработка подавляет биокоррозию, а также за счет отмыва биопленки и механических примесей с поверхности металла облегчает доступ к ней ингибитора коррозии.