Смекни!
smekni.com

Диатомит как природный наноматериал (стр. 5 из 5)

Технические требования

Наименование показателя Марка А (порошок) Марка Б Марка В
Насыпная плотность в состоянии естественной влажности, кг/м 3 , не более 400 375 350
Теплопроводность, Вт/(м*К) (ккал/мч° С), не более при температуре (25 ±3)° С (300 ±5)° С 0,111 (0,095) 0,175 (0,151) 0,105 (0,090) 0,167 (0,144) 0,100 (0,086) 0,160 (0,137)
Влажность, % по массе, не более 5 5 5
Содержание зерен крупнее 20 мм, % по массе, не более 0,2 2,0 20,0

5.5 Применения активированного диатомита в сухих строительных смесях

Диадомиты являются природными активными минеральными добавками (АМД) осадочного происхождения. Обладают высокой пористостью и являются хорошими инсектицидами. Эти свойства диатомитов широко используют при производстве товарного бетона, строительных растворов и сухих строительных смесей различного назначения.

Действие диадомитов, как активных минеральных добавок, основано на способности, содержащегося в них аморфного кремнезема, связывать известь в низкоосновные гидросиликаты кальция по схеме:

SiO2 + Ca(OH) + n(H2O) = (B) CaO SiO2 H2O

Известно, что способность связывать гидроксид кальция в присутствии воды при обычных температурах обусловлена содержанием в диатомитах веществ в химически активной форме, поэтому характер и интенсивность взаимодействия с известью различны в зависимости от количества аморфного SiO2, содержание которого в диатомитах может колебаться от 40% до 100% к общему количеству SiO2. В основном это определяется условиями и водной средой обитания диатомей, в которых происходило формирование их панциря.

Для оценки эффективности применения активированного диатомита были проведены сравнительные исследования строительно-технологических характеристик сухих строительных смесей с различными природными и техногенными АМД.

Использование АМД в составах сухих строительных смесей способствует формированию плотной структуры материала, благодаря чему наряду с повышением прочностных характеристик снижается проницаемость, повышается морозостойкость, стойкость к истиранию и эрозии, а также устойчивость материала к различным видам коррозии, что в конечном итоге определяет его высокую долговечность.

При определении активности различных минеральных добавок использовался метод, основанный на способности поглощения добавками извести из известкового раствора в течение 30 суток. Поглощение извести активированным диатомитом через 30 суток до 4 раз превышает аналогичный показатель природных АМД и на 60% выше активности микрокремнезема. Наряду с высоким показателем активности в возрасте 30 суток для активированного диатомита наблюдалось интенсивное поглощение извести в первые 3 суток.

Дальнейшие испытания проводились для составов cуxиx строительных смесей с различными АМД при замещении ими ПЦ в количестве 5,10,15%. Для снижения водопотребности в состав ССС вводиться суперпластификаторы различного типа.

Совместное использование СП и АДМ положительно влияет на прочность затвердевшего раствора в возрасте 28 суток. Однако в ранние сроки интенсивный набор прочности наблюдается только при использовании активного диатомита.

Наиболее эффективным является применение активированных диатомитов в количестве 3–10% от массы цемента, при дальнейшем увеличении дозировки эффективность применения активированных диатомитов начинает снижаться. Для сравнения, максимальная эффективность применения микрокремнезема и природного диатомита находится в пределах 10–15% от массы цемента, а для природных АМД вулканического происхождения, этот предел может увеличиваться до 20%.

При оптимальной дозировке активированных диатомитов, используемых в сочетании с суперпластификаторами, благодаря их полифункциональному действию возможно получение составов сухих строительных смесей с высокими прочностными характеристиками, низкими усадочными деформациями, высокой морозостойкостью и стойкостью к различным видам коррозии.

ЗАКЛЮЧЕНИЕ

Нанотехнология в отличие от обычной технологии исповедует принцип «от меньшего – к большему», использует сборку изделий, приборов и устройств из малых деталей. Сейчас стоит задача – для нужд нанотехнологии классифицировать диатомовые водоросли по размерам и форме отдельных частей их скелетов: по геометрии пор, створок, ребер, рогов, шипов, шипиков, щетинок, сплошных и полых колючек, трубковидных выростов и пр. Биологам необходимо провести исследования специфических белков и генов, «задающих» ту или иную форму кремнеземного скелета, чтобы в результате получать нужные для техники формы (уже известен белок, называемый стаффином, который управляет синтезом микроскопических структур из растворенных в воде кремнекислот). Надо изолировать гены некоторых водорослей, чтобы решить ту же задачу: управлять биосинтезом.

Форму скелетов можно менять, вводя те или иные растворимые соли в искусственную среду обитания водорослей. В принципе возможно «научить» отдельные еще живые водоросли находить определенные места на какой-либо подложке и закрепляться на ней, т.е. подойти к процессу самосборки нужных функциональных структур. Предстоит проделать большой объем исследований, прежде чем диатомовые водоросли действительно станут «работать» на людей.


СПИСОК ЛИТЕРАТУРЫ

1. Гончаров Ю.И., Лесовик В.С. Минералогия и петрография сырья для производства строительных материалов и технической керамики. – Белгород: Изд-во БелГТАСМ, 2001. – 181с.

2. Добровольский В.В. Геология. – М.: Гуманит. издат. центр ВЛАДОС, 2003. – 320с.: ил.

3. Пустовгар А.П. Эффективность применения активированных диатомитов в сухих строительных смесях. Ж., Строительные материалы, октябрь 2006 г.

4. www.articlef.php.htm

5. Минько Н.И., Строкова В.В., Жерновский И.В., Нарцев В.М. Методы получения и свойства нанообьектов. – Белгород: Изд-во БГТУ, 2007. – 148с.