Смекни!
smekni.com

Бентонит как природный наноматериал (стр. 7 из 7)

5.6 Производство железорудных окатышей

Принято считать, что натриевые бентониты наиболее пригодны для целей окомкования железорудных концентратов. Качество бентонита как связующей добавки определяется их набухаемостью.

Щелочные гидротермально-метасоматические и вулканогенно-осадочные морские бентониты характеризуются высоким качеством как связующая добавка для окомкования железорудных концентратов. Щелочноземельные, в том числе и типично кальциевые, практически мономинеральные их разновидности в окатышах также ведут себя превосходно. Осадочные бентониты, обладая, как правило, минимальным содержанием монтмориллонита, для целей окомкования в естественном состоянии не пригодны.

На качество бентонитов как связующей добавки в окомковываемой шихте влияют многие факторы. Основными критериями их качества являются: содержание монтмориллонита > 85%, содержание мелкопелитовых частиц должно быть не менее 50% массы породы [1].


5.7 Литейное производство

В литейном производстве, так же как и в любом другом, строго различаются щелочные бентониты (набухающие) и щелочноземельные (ненабухающие). Эти разновидности обладают различной способностью к дегидратации и в связи с этим характеризуются разной долговечностью и прочностью в литейных формах.

Связующие свойства лучше у щелочных бентонитов. Прочность формовочных смесей, приготовленных с ними, изменяется от 0,40 до 0,66 МПа в сухом состоянии. Смешанные бентониты придают прочность формовочным смесям в сухом состоянии 0,55 МПа, тогда как кальциевые разновидности 0,44 – 0,50 МПа. Осадочные щелочноземельные бентониты придают прочность формовочным смесям в сухом состоянии 0,40 – 0,70 МПа. Прочность сухих форм с использованием элювиальных бентонитов 0,37 – 0,48 МПа.

Приведенные данные позволяют отнести все исследованные глины к формовочным бентонитам прочно- и среднесвязующим во влажном и сухом состоянии со средним и высоким содержанием вредных примесей.

Исследованные бентониты могут применяться для приготовления форм, для отливки как стального, так и чугунного литья. При этом для стального литья предпочтение отдается щелочным бентонитам. Для производства мелкого чугунного литья широко используются кальциевые бентониты. Для крупных чугунных отливок рекомендуются натриевые бентониты или смесь обеих разновидностей.

Кальциевый бентонит, кроме того, можно использовать для литья цветных металлов, за исключением сплавов никеля с высокой температурой плавления.


Заключение

Производство наночастиц из бентонита сложный процесс, основанный на использовании тонких технологий, требующих глубоких научных исследований, а главное знание минералогии бентонита.

Бентонитовая глина является своеобразным полуфабрикатом или основой для промышленного производства наночастиц. Наноматериалы могут изготавливаться и использоваться в виде порошков, пленок, покрытий, а также объемно-структурированных, тонкозернистых соединений. При получении из бентонитовой глины нанопорошков целесообразно осуществлять наноструктурную подготовку в специальных механических активаторах (типа планетарных вибромельниц). Использование бентонита в строительных нанокомпозитах типа пластмасс и специальных суспензий требует разработки технологии получения устойчивых во времени нанопленок с заданными свойствами.

Наноматериалы могут производиться как путем синтеза нового материала, так и путем деформирования материала с известной структурой. Малый размер зерен обуславливает большую протяженность межзерновых границ раздела. Сами же зерна могут иметь различные дефекты, количество и распределение которых иное чем в крупных зернах. Поэтому в настоящее время уменьшение размера зерен рассматривается как эффективный метод изменения свойств твердого тела.


Список литературы

1. Кирсанов Н.В. Генетические типы и закономерности распространения месторождений бентонитов в СССР / Н.В. Кирсанов, М.А. Ратеев, А.А.Сабитов и др. – М.: Недра, 1981, – 214 с.

2. Рентгеновские методы изучения и структура глинистых минералов / Под ред. Г. Брауна, – М.: МИР, – 1965, – 307 с.

3. Берри Л.Г. Минералогия / Л.Г. Берри, Б.Г. Мейсон, Р.В. Дитрих, – М.: МИР, – 1987, – 603 с.

4. Грим Р.Э. Минералогия и практическое применение глин / Р.Э. Грим, – М.: МИР, – 1967, – 264 с.

5. Котельников Д.Д. Глинистые минералы осадочных горных пород / Д.Д. Котельников, А.И. Конюхов, – М.: Недра, – 1986, – 247 с.

6. Куковский Е.Г. Особенности строения и физико-химические свойства глинистых минералов / Е.Г. Куковский, – К.: Наукова думка, – 1966, – 128 с.

7. Осипов В.И. Микроструктура глинистых пород / В.И. Осипов, В.Н. Соколов, Н.А. Румянцева, – М.: Недра, – 1989, – 211 с.

8. Брегг У.Л. Кристаллическая структура минералов / У.Л. Брегг, Г.Ф. Кларингбулл, – М.: МИР, – 1966, – 389 с.

9. Сребродольский Б.И. Загадки минералогии / Б.И. Сребродольский, – М.: Наука, – 1987, – 160 с.

10. ГОСТ 3226 – 77. Глины формовочные. Технические условия.

11. ТУ 39 – 043 – 74. Глинопорошки для буровых растворов.