Смекни!
smekni.com

Бентонит как природный наноматериал (стр. 3 из 7)

Формирование элювиальных бентонитов, как и других полезных ископаемых, связанных с корами выветривания, определяется в основном тремя факторами: составом исходных материнских пород, климатом и тектоникой. Тектоника района определяет рельеф, глубину профиля выветривания и возможность формирования коры выветривания. Важное значение имеет климат, определяющий соотношение физической и химической форм разложения материнских пород, а также характер вновь образуемых минералов. Для образования и устойчивого сохранения монтмориллонита благоприятен гумидный – умеренный и теплый влажный климат. Значительную роль играет также время – продолжительность процесса выветривания.

По составу материнских пород, послуживших исходным материалом для формирования, элювиальные бентониты подразделяются на три подтипа: по интрузивным породам, по эффузивным породам, по осадочным породам.

Для формирования месторождений бентонитов по интрузивным породам наиболее благоприятны ультраосновные, реже основные породы (серпентиниты, пироксениты и др.) богатые соединениями железа и магния. По ним образуются нонтронитовые глины – железистые щелочноземельные бентониты. Примерами таких месторождений являются Сахаринское и другие на Южном Урале.

Из эффузивных наиболее благоприятны для формирования элювиальных бентонитов кислые, реже основные породы (липариты, андезит-липариты и андезиты). По ним образуются светлые маложелезистые щелочноземельные и смешанные бентониты. Примером может служить Усть-Маньинское проявление на восточном склоне Северного Урала.

И, наконец, третий элювиальный генетический подтип формируется за счет выщелачивания осадочных карбонатно-глинистых пород (мергелей, известковистых глин). К нему относится Разгонское месторождение формовочных щелочноземельных бентонитов в Иркутской области.

Бентониты элювиального типа характеризуются рядом специфических признаков. Обычно они пестроцветные, по основным и средним породам – светлые, по кислым (редко) – белые. Содержание монтмориллонита (по ультрабазитам) в среднем 70 – 75%, редко выше. Степень кристаллического совершенства его низкая. Бентониты, образованные по ультрабазитам, отличаются в среднем повышенным содержание Fe2О3 (до 21%), MgO (до 8%), Ni и Со, а по средним и кислый породам – относительно повышенным количеством Na2О (до 2,5%) [1].

Форма месторождений линзообразная и карманообразная, мощности толщ обычно измеряются первыми единицами метров, площадь распространения – десятками квадратных километров. Запасы мелкие и очень мелкие, редко средние.


2 Химико-минеральный состав

Необходимо установить минералогические, химические, физические и технологические особенности бентонитов каждого генетического типа для того, чтобы определить возможные пути их использования, а также выявить возможности определения генетического типа бентонита по совокупности его химико-минералогической, физико-технической и технологической характеристик.

По количественному содержанию главнейших окислов бентониты характеризуются в средних значениях следующим нисходящим рядом: SiО2 > А12О3 > Fe2О3 > MgO > СаО > K2О > Na2О. Значительные колебания химического состава бентонитов согласуются с генетическими представлениями, поскольку формирование их по источнику материала и по способу образования было неодинаковым.

Близки между собой по химическому составу бентониты гидротермальные и вулканогенно-осадочные (по эффузивным породам), а также бентониты осадочные и элювиальные по интрузивным и осадочным породам. Первые из них содержат больше SiО2, СаО, MgO, MnO, Na2О, причем Na2О примерно в 3 раза больше, тогда как A12О3, Fe2О3, FeO, К2О меньше. Химический состав железистых монтмориллонитов (нонтронитов) представлен в основном четырьмя окислами: SiО2 46%; Fe2О3 20%; А12О3 11%; MgO 8%. Кроме того, они характеризуются присутствием MnO, CrО3, NiO и др.

Железо, как в естественных бентонитах, так и в пелитовых фракциях присутствует в основном в форме Fe3+, являясь составной частью труднорастворимых силикатов, а также железистых минералов. Содержание Fe3+ и Fe2+ в естественных образцах мало отличается от такового в пелитовых фракциях (равно как и молекулярные отношения SiО2:Fe2О3), поэтому можно считать, что часть глинозема замещена окисью железа, притом в значительной степени в пелитовой фракции. Следовательно, труднорастворимое силикатное железо связано с глинистыми минералами. Железо в бентонитах встречается в различных формах (табл. 2). Если говорить о связи железа с глинистыми минералами, то они осуществляются путем изоморфных замещений в кристаллической решетке монтмориллонита, например А13+ на Fe2+, с одной стороны, и в виде тонких и устойчивых пленок минералов группы железа, расположенные на поверхности глинистых частиц – с другой.

Данные химического анализа дают также общую характеристику сырья, они часто используются как признаки, определяющие качество бентонита. Например, формовочные глины по содержанию сульфидной серы и некоторых окислов регламентируют группу вредных примесей и др. По сравнению с естественными образцами химический состав мелкопелитовой фракции бентонитов отличается пониженным содержанием SiО2, FeO, CaO, MgO, К2О и повышенным А12О3, Fe2О3, Na2О (табл. 2). Молекулярные отношения (SiО2:A12О3) в среднем 5 при колебании 4,8 – 5,5 в гидротермальных и вулканогенно-осадочных бентонитах и 3 – 5,9 в осадочных и элювиальных, что характерно для бентонитов.

Бентониты должны содержать не менее 60% минералов монтмориллонитовой группы, остальные 40% примесей: гидрослюда, смешанослойные образования, каолинит, палыгорскит и др. [3]. Из неглинистых минералов обычно присутствуют цеолиты, кристобалит, кварц, полевые шпаты. Изучение минерального состава бентонитов разных генетических типов выявило различие, как в содержании породообразующего минерала, так и в количестве и качестве примесей (табл. 2).

Наиболее высокое содержание монтмориллонита наблюдается у гидротермально-метасоматических и вулканогенно-осадочных бентонитов. Монтмориллонит может быть как щелочным, так и щелочноземельным; в небольших количествах могут присутствовать смешанослойные минералы, гидрослюды, каолинит, цеолиты, полевые шпаты.

Таблица 2 – Усредненный минеральный состав бентонитов (в %) [1].

Генетический тип Разновидность монтмориллонита Примеси
Щелочной Щелочноземельный Каолинит Гидрослюда Смешаннослойные образования
Гидротермально-метасоматическийВулканогенно-осадочныйВулканогенно-осадочныйТерригенно- и коллоидно-осадочныйЭлювиальный 8585––– ––656570 555 – 151510 555 – 10105 555 – 101015

В элювиальных бентонитах содержание монтмориллонита меньше, соответственно больше примесей, особенно смешаннослойных образований; в них имеются, в зависимости от материнских пород, минералы никеля, кобальта, железа, титана, кальцит, доломит и др.

Терригенно- и коллоидно-осадочные бентониты имеют содержание монтмориллонита минимальное, едва позволяющее им называться бентонитами. Монтмориллонит щелочноземельный. Содержание примесей – смешаннослойных образований, каолинита, гидрослюд – высокое; присутствуют также опал, аллофан.

Таким образом, бентониты разных генетических типов различимы по минеральному составу. Но могут быть и отклонения от этой схемы как по содержанию монтмориллонита, так и по содержанию примесей. В частности, щелочноземельные монтмориллониты встречаются во всех типах, кроме того, содержание породообразующего монтмориллонита может сильно варьировать по разным причинам. Поэтому необходимо рассматривать сами минералы монтмориллонитовой группы в бентонитах.

Минералы монтмориллонитовой группы в зависимости от изоморфных замещений подразделяются на диоктаэдрические (монтмориллонит, бейделлит, нонтронит) и триоктаэдрические (сапонит, гекторит) виды [1].

Монтмориллонит – Al3.33Mg0.67(Si8О20)(OH)4 + 0,67Na

Бейделлит – (Si7.33Al0.67)(Al4)O20(OH)4

Нонтронит – (Si7.33Al0.67)(Fe4)O20(OH)4

Сапонит – Mg6(Si7.33Al0.67)O20(OH)4 + 0,33Ca


3 Структура бентонитовых глин

3.1 Общие сведения о структуре глинистых минералов

Атомная структура обычных глинистых минералов достаточно детально изучена многочисленными исследователями, работы которых основываются на обобщениях Паулинга [4].

Атомная структура большинства глинистых минералов сложена двумя единицами. Одна структурная единица состоит из двух слоев плотноупакованных кислородов или гидроксилов, в которых атомы алюминия, железа или магния расположены в октаэдрической координации таким образом, что каждый из них находится на равном расстоянии от шести кислородов или гидроксилов (рис. 2). В случае заполнения октаэдрических позиций алюминием, чтобы сбалансировать структуру, представляющую собой структуру гиббсита А12(ОН)6, заполнены должны быть только две трети возможных позиций. В случае магния, чтобы сбалансировать структуру, представляющую собой структуру брусита Mg3(OH)6, необходимо заполнение всех возможных позиций. Нормальное расстояние между атомами кислорода составляет 2,60 Å, а между гидроксилами обычно около 3 Å. Однако в этой структурной единице расстояние между гидроксилами равно 2,94 Å, а пространство, доступное для атома в октаэдрической координации, составляет около 0,61 Å. Толщина этой структурной единицы в структурах глинистых минералов равна 5,05 Å.

Рисунок 2 – Схематическое изображение отдельного октаэдра (а) и октаэдрической сетки структуры (б).

Вторая структурная единица образована кремнекислородными тетраэдрами. В каждом тетраэдре атом кремния одинаково удален от четырех кислородов или гидроксилов, расположенных в форме тетраэдра с атомом кремния в центре, чтобы сбалансировать структуру. Кремнекислородные тетраэдры сгруппированы таким образом, что создают гексагональную сетку, которая бесконечно повторяется и образует лист состава Si4О6(OH)4 (рис. 3). Тетраэдры расположены так, что все их вершины обращены в одну сторону, а основания лежат в одной и той же плоскости (здесь могут быть исключительные случаи, в которых некоторые тетраэдры перевернуты). Эту структуру можно рассматривать как структуру, состоящую из перфорированной плоскости кислородных атомов, расположенных в плоскости основания тетраэдрических групп; плоскости атомов кремния с атомами кремния, расположенными в полости в месте соединения трех атомов кислорода и, следовательно, образующими гексагональную сетку; плоскости атомов гидроксила, в которой каждый гидроксил расположен непосредственно над кремнием на вершине тетраэдров. Открытую гексагональную сетку можно рассматривать как сетку, образованную тремя нитками атомов кислорода, пересекающимися под углом 120°. Расстояние между атомами кислорода в листах кремнекислородных тетраэдров составляет 2,55 Å, а пространство, доступное для атома в тетраэдрической координации, около 0,55 Å. Толщина этой структурной единицы в структуре глинистых минералов равна 4,93 Å [4].