Смекни!
smekni.com

История развития нового геодезического прибора "Электронный тахеометр" (стр. 2 из 6)

Светодальномеры обычно устанавливаются на верхнюю часть зрительной трубы, но не всегда, Основная же схема дальномера у всех приборов примерно одинаковая.

Свет, выходя из лагера 1, когда открыта шторка 2, проходит по каналу ОКЗ "а" в приемник 4. Когда шторка перекрывает канал ОКЗ, она открывает канал дистанции "б" и свет, отражаясь от призмы 3 и зеркала 5, проходит через объектив 6 на отражатель 7. Отразившись от отражателя 7, свет проходит через объектив 6 и, отражаясь от зеркала 5 и призм 3, попадает на приемник 4, (Рис. 13)

Рис.13. Оптическая схема дальномера тахеометра в режиме измерений с призмой .


После этого в приборном блоке, зная точную длину канала ОКЗ и время прохождения луча в канале и до призмы, по пропорциям вычисляются расстояния.

4.3.2 Светодальномер в режиме измерений без отражателя

Свет из излучателя 1, отражаясь от зеркала 2, проходит через объектив 3 до отражающей поверхности 4. Возвращаясь через объектив 3, свет отражается от зеркала 5, проходит до обратной стороны зеркала 2, отражаясь от него, попадает во входной зрачок 6 световода 7, проходит через светофильтр мотора уровня сигнала 11 и попадает на детектор 8. Канал ОКЗ проходит от излучателя через световод 10, доходит до шторки 9. Когда шторка закрыта для канала дистанции, свет отражается от шторки и попадает на детектор 8 по каналу ОКЗ. (Рис. 14)

Рис.14. Оптическая схема дальномера тахеометра в режиме без отражателя.

Для того, чтобы оптические схемы дальномеров работали, необходимо, чтобы свет, выходящий из объектива, и свет, идущий обратно на детектор, шли по одному каналу, т. е. каналы излучения и приема были соосны между собой и соосны визирной оси зрительной трубы

Зеркало 2, прозрачно и покрыто амальгамным покрытием, которое отражает инфракрасное излучение.

Безотражательные светодальномеры пока ещё не совершенны, и результат измерения зависит от типа отражающего покрытия и его цвета, например лучше всего пучок света отражается от белого покрытия при этом от чёрного покрытия практический не отражается.

4.3.2.1 Импульсный и фазовый дальномеры

Рис. 15. Оптические схемы импульсного (вверху) и фазового (внизу) дальномеров

Электронное измерение расстояния без отражателя может быть произведено любым из двух методов: с помощью определения времени прохождения сигнала или определения разности фаз. Метод определения времени прохождения сигнала реализован в дальномере DR300+, в котором используется импульсный лазер. Метод определения разности фаз лежит в основе дальномера DR Standard. Как показано на рисунке 15, оптические схемы каждого из методов различны и соответственно имеют свои преимущества и недостатки.

4.3.2.1.1 Импульсный дальномер

Для вычисления расстояний в импульсном методе определяется точное время прохождения импульса до цели и обратно (TOF).

Импульсный лазер генерирует множество коротких импульсов в инфракрасной области спектра, которые направляются через зрительную трубу к цели. Эти импульсы отражаются от цели и возвращаются к инструменту, где при помощи электроники определяется точное время прохождения каждого импульса. Скорость прохождения света сквозь среду может быть точно определена. Поэтому, зная время прохождения, можно вычислить расстояние между целью и инструментом. Измерения с помощью определения времени прохождения сигнала (TOF) обычно имеют не только наибольшую дальность, но и соответствуют самым высоким стандартам безопасности, поскольку интервалы между импульсами препятствуют накоплению вредной для глаз энергии.

Каждый импульс – это однократное измерение расстояния, но поскольку каждую секунду могут быть посланы тысячи таких импульсов, то с помощью усреднения результатов достаточно быстро достигается высокая точность измерений. В ходе измерения делается около 20000 лазерных импульсов в секунду. Затем они усредняются для получения более точного значения расстояния. Точность обычных импульсных дальномеров обычно несколько ниже, чем у фазовых (до 10 мм). Однако в дальномере Trimble DR300+ используется патентованная методика обработки сигнала, позволяющая достичь высокой точности при измерении больших расстояний как с использованием, так и без использования призм. Некоторые тахеометры с импульсным дальномером перед каждым измерением должны быть сфокусированы на цель. При использовании Trimble DR300+ этого не требуется.

4.3.2.1.1 Фазовый дальномер

DR Standard – это лазерный дальномер, основанный на методе сравнения фаз сигнала. Дальномер передает коаксиальный оптический пучок с модулированной интенсивностью, который отражается от призмы или другой отражающей поверхности. После этого определяется разность фаз между переданным и отраженным принятым сигналом, по которой вычисляется расстояние. В режиме измерений по призмам дальномер DR Standard работает как быстрый и точный дальномер с большим радиусом действия (до 3500 м по одной призме). В безотражательном режиме DR дальномер DR Standard передает красный коллимированный лазерный пучок до цели и вычисляет сдвиг фазы между переданным и принятым сигналами. Метод измерения разности фаз работает по принципу наложения на несущую частоту модулированного сигнала. Прибор измеряет постоянное смещение фазы, несмотря на неизбежные изменения в излучаемом и принимаемом сигнале. В результате сравнения фаз опорного и получаемого сигнала определяется только величина сдвига фазы, а целое число циклов остается неизвестным и не позволяет сразу получить расстояние. Эта неоднозначность разрешается путем многократных измерений модуляции волны, в результате чего определяется уникальное целое число циклов. Как только целое число циклов определено, то расстояние до цели может быть вычислено очень точно.

4.4 Угломерная часть

В оптическом теодолите свет попадает через зеркало подсветки, а приемником информации является глаз наблюдателя, берущего отсчёт в окуляре оптического микрометра.

В электронных тахеометрах работу подсветки выполняет светодиод, в качестве микрометра используется дифракционная решетка, а приемником информации является фотоприемное устройство, которое преобразует световую энергию в электрический сигнал.

Угломерные системы в современных тахеометрах бывают аналоговые и цифровые. Принцип настройки у них один, но исполнение разное. Угломерные системы бывают одно- и двусторонние. Аналоговые угломерные устройства представляют собой лимб со штрихами, где толщина штрихов равна промежутку между ними. Для того чтобы датчик угла мог оценить направление счета, необходимо иметь две полосы со штрихами. Между собой штрихи сбиты на четверть толщины штриха. Под лимбом устанавливается дифракционная решетка.

Светодиод просвечивает лимб с решеткой, и изображение полученной муаровой картины попадает на фотоприемное устройство. На нем четыре окна; два под внешней полосой штрихами и два под внутренней. Каждая пара окон снимает отсчеты sin и cos. Затем сигналы "sin - sin" и "cos -cos" объединяются, усиливаются предварительным усилителем и передаются в накопительный датчик угла

Датчик угла способен посчитать число периодов и таким образом определить угол поворота тахеометра.

Рис.16. Растровые лимбы

Счет по растровому лимбу возможен только при наличии дифракционной решетки. В разных тахеометрах применяют разные конструктивные решения. Вот некоторые из них. Лимб вертикального круга (1) прикреплен к оси трубы (2). Дифракционная решетка (4) подкреплена к стойке (3). За решеткой установлен фотоприемник (5), который крепится вместе с излучателем (б) к корпусу (7) болтами (8), Для установки дифракционной решетки (4) используют микроскоп. (рис 16)

Лимб, установленный на оси зрительной трубы, вращается во втулке корпуса. На корпус монтируется второй лимб на станине, прикрепленной к корпусу. На лимб нанесены две дифракционные решетки. К корпусу монтируют фотоприемные устройства со светодиодами. Посадочные места лимбов скреплены между собой болтами через пружинные шайбы. Затяжка болтов сближает лимбы, ослабляя болты. Пружинные шайбы ослабляют лимбы. Это позволяет фокусировать оптическую систему.

5. Конструктивные особенности в новых приборах, новые возможности приборов

При производстве большинства геодезических работ, как правило, требуется выполнять как угловые, так и линейные измерения, для чего обычно использовались оптические тахеометры. Еще в конце ХЕХ века венгерский геодезист Тихи ввел в обиход слово "тахеометр", которое в переводе с греческого языка означает "быстроизмеряющий".

Позднее для этих целей стали использовать светодальномеры и теодолиты. Когда были созданы компактные светодальномеры, то конструкция их предусматривала возможность установки на теодолит. И в настоящее время конструкции светодальномеров, выпускаемых Уральским оптико-механическим заводом, предусматривают возможность их установки на теодолит. Позднее начали выпускаться приборы в общем корпусе для оптического теодолита и светодальномера. Мощным толчком в геодезическом приборостроении стал выпуск электронного тахеометра AGA-136 (Швеция), в котором оптическая система отсчета углов была заменена на электронную, т. е. в едином корпусе размещался прибор, который совмещал функции светодальномера и цифрового теодолита. В дальнейшем в электронный тахеометр был введен полевой компьютер, открыв тем самым начало выпуска компьютезированных электронных тахеометров. Использование электронных тахеометров позволило полностью отказаться от ведения полевого журнала.

В современные приборы начали встраивать мощные полевые компьютеры для обработки результатов измерений и решения непосредственно в поле типовых геодезических задач, расширились потенциальные возможности приборов за счет значительного улучшения технических характеристик.