Смекни!
smekni.com

Вулканы Тихоокеанского складчатого пояса в пределах Камчатско-Курильской гряды (стр. 2 из 11)

Под действием дополнительной нагрузки ослабленные блоки литосферы стали погружаться. Причем относительно маловязкий магматический расплав, внедрившийся по глубинным расколам, служил «смазкой», уменьшавшей трение между опускавшимися блоками и участками ненарушенной литосферы. Опусканию могло способствовать также и то, что плотность астеносферы непосредственно под подошвой литосферы, по-видимому, несколько уменьшалась в результате частичного плавления здесь ее материала. Во вторую стадию совместное действие опускания и сопутствующих ему явлений, а также бокового давления со стороны океанической плиты Тихого океана в связи с активизацией зоны субдукции после исчезновения Поднятия Дарвина привело к отрыву утяжеленных нижних фрагментов литосферы. Они стали погружаться в астеносферу, вращаясь вокруг вертикальной оси, а облегченные фрагменты – подниматься наверх. Непосредственно под земной корой оказалось разуплотненное астеносферное вещество, имеющее, по И.П. Кузину, сейчас плотность 3.2 г./см3. А поднятые блоки литосферы сформировали асимметричный хребет. Когда в результате поднятия облегченных блоков и вулканической аккумуляции хребет достиг своей предполагаемой максимальной абсолютной высоты порядка 7–9 км, а его относительное превышение под дном океана составило 12–14 км, могли, по-видимому, создаться предпосылки для разрушения хребта. Помимо больших абсолютных и относительных высот морфоструктуры для этого было еще три благоприятных фактора. Во-первых, значительный общий прогрев на глубине слагавших ее пород, обеспечивший снижение порога пластичности. Одна из возможных причин нагрева – магматическое вещество, вторая – опускание в предыдущую стадию на глубину, в условия более высоких температур. Во-вторых, наличие непосредственно под «всплывшей» корой относительно маловязкого пластичного базальтового материала, из сильно нагретого и высоко поднятого астеносферного вещества, которое заместило здесь погрузившиеся утяжеленные мантийные компоненты литосферы. Этот пластичный материал мог сыграть роль своеобразной «смазки», уменьшившей трение между выше и нижележащими слоями. Наконец, таким благоприятным фактором служит процесс накопления материала на больших гипсометрических отметках в ходе роста морфоструктуры. Он способствовал увеличению давления выше расположенных участков на участки, находящиеся ниже. Рост давления и температуры мог вызвать у некоторых разновидностей пород и в слагаемых ими горизонтах свойство сверхпластичности – способности удлиняться во много раз без образования пережимов и разрывов при одновременном сильном уменьшении мощности пластов. Подобная комбинация условий привела, вероятно, к тому, что в какой-то критический момент произошло резкое изменение реологических свойств части вещества морфоструктуры и увеличение скорости сдвига в нем до предела длительной текучести. В результате материал, слагавший хребет, быстро переместился на большое расстояние к востоку, в сторону океана, образовав некоторое подобие гигантского коро-мантийного «суперпотока». При этом сам хребет снизился и растрескался. А у его подножия и на поверхности сопредельного с ним участка океанической плиты, находившегося до этого в состоянии изостатического равновесия, внезапно оказалась многокилометровой мощности толща пород, принесенных сюда «суперпотоком» и заместивших менее плотную воду. Большая дополнительная литостатическая и динамическая нагрузка на эти участки вызвала их раздробление и опускание. По периметру «суперпотока» заложился узкий ров – первичный глубоководный желоб. Разрушение морфоструктуры помимо перераспределения слагавшей ее массы пород явилось причиной формирования здесь глубоких прогибов и крупных зон растяжения, к которым был приурочен мощный подводный и надводный базальтовый вулканизм. Судя по возрасту этих образований, к которым можно отнести Восточно-Камчатский прогиб Северной и Восточной Камчатки с интенсивным подводным базальтовым вулканизмом, козловскую и кинкильскую свиты, одна из первых подвижек «суперпотока» имела место еще в палеогене. Удаление материала из центральной части морфоструктуры дало толчок к новому этапу «всплывания» коры и интенсификации вулканической деятельности и, как следствие этого, – новому этапу роста в высоту морфоструктуры, очередной подвижке «суперпотока», увеличению его протяженности, дальнейшему смещению в восточном направлении положения более молодого глубоководного желоба, опусканию прилегающих к нему участков. Такой механизм удовлетворительно объясняет, в частности, погружение на 3.5–4 км мел-палеогеновой суши, бывшей на месте подводного поднятия Обручева, наличие которой предполагается А.Е. Шанцером по перерыву в осадконакоплении с маастрихта по средний миоцен, установленного по данным глубоководного бурения. Самая молодая к настоящему времени общерегиональная подвижка «суперпотока», по-видимому, имела место в плиоцене около 3.5–2.5 млн. лет назад. Тогда же у фронта «суперпотока» сформировался и ныне существующий глубоководный Курило-Камчатский желоб. Перед этой подвижкой морфоструктура Курило-Камчатского хребта еще раз достигла максимальной высоты, а начальная ее фаза сопровождалась колоссальным по мощности пароксизмом кислого эксплозивного вулканизма, более поздняя фаза, когда произошло разрушение хребта – массовыми базальтовыми излияниями. Эпизодический характер активизации «суперпотока» скорее всего связан с релаксационным типом механизма его подвижек, предопределенным закономерным изменением свойств вещества морфоструктуры. А сами подвижки, по-видимому, следует рассматривать как релаксационные автоколебания этой своеобразной системы, которые начались десятки миллионов лет назад и будут продолжаться в дальнейшем, поскольку вызвавшие их процессы действуют до сих пор. Хотя, вероятно, характеристики этих процессов станут иными, чем раньше. Однако последнее должно сказаться лишь на изменении масштабов и периодичности подвижек. Сходным образом в целом развивались события, по-видимому, и на участках, где зона растяжения заложилась на океанической коре периферии Тихого океана. Хотя некоторые аспекты геологической эволюции камчатского и курильского регионов и сопредельных с ними территорий заметно отличались. Так, одно из отличий состоит в том, что на месте отчлененного, но сохранившего свое первичное строение блока океанической литосферы всегда возникает глубоководная впадина: Курильская котловина Охотского моря, Командорская и Алеутская котловины Берингова моря и др. По классификации И.П. Косминской (Косминская и др., 1963), кора Курильской котловины относится к «субокеаническому» типу, т.е. является, по сути дела, обычной океанической корой, но нагруженной более мощным (3–6 км) осадочным чехлом. Поскольку частично заместившие водную оболочку осадочные толщи имеют бóльшую плотность, чем вода, подошва коры здесь несколько (на 1–2 км) опущена особенно вблизи западного подножия островного склона Большой Курильской гряды и продолжает погружаться по мере накопления осадочных отложений и вулканогенных толщ. Наличие последних обусловлено мощным вулканизмом, связанным с тем, что вдоль подножия склона проходит разбитая многочисленными нарушениями 20–30-километровая полоса контрастных тектонических движений на границе двух литосферных блоков, западный из которых постоянно опускается, а восточный с редуцированной литосферой имеет тенденцию к подъему. Интенсивность вулканизма здесь, вероятно, каждый раз резко увеличивается, когда происходит общее растрескивание морфоструктуры после очередных быстрых пульсаций суперпотока.

Существенные отличия имеет и вулканизм. В Курильском регионе меньше были, в частности, масштаб кислого вулканизма в целом, а также разовые объемы выбросов ювенильной пирокластики, площади пирокластических покровов, размеры кальдер обрушения; отсутствуют наиболее кислые разности пород: липарито-дациты, липариты (Эрлих, 1973; Мелекесцев и др., 1974). По-видимому, это объясняется отсутствием блоков континентальной литосферы – вероятных главных потенциальных источников кислого материала. А погруженные в мантию в результате дополнительной нагрузки или субдукции блоки океанической литосферы (даже вместе с их осадочным чехлом и базальтовым слоем коры) не могут дать значительных объемов небазальтового материала.

Причем последний в течение миоцена-антропогена выплавлялся преимущественно под островами Главной Курильской гряды. Дальше на запад его количество быстро уменьшалось, о чем свидетельствует быстрое поосновнение среднего состава пород антропогенового возраста в этом направлении.

На Курилах при пульсациях «суперпотока» происходило сдвигание к востоку вулканических образований, сформированных над зоной глубинного растяжения, которая, как и на Камчатке, возникла еще в верхнем мелу и продолжает функционировать до настоящего времени, оставаясь на одном месте. Она, по-видимому, находится с охотской стороны Большой Курильской гряды на границе глубоководной впадины и западного подножия островного склона гряды, трассируясь интенсивным базальтовым вулканизмом.

Первоначально над этой зоной растяжения выросли вулканические формы, участвующие теперь в строении подводного хребта Витязя и его надводного продолжения – Малой Курильской гряды. Вполне вероятно, что в то время (60–70 млн. лет назад) здесь была одиночная островная дуга, близкая по облику к современной Большой Курильской гряде, но сложенная преимущественно основными по составу породами: базальтами, их туфами и туфобрекчиями, а также продуктами переработки этих пород – вулканогенно-осадочными толщами. Скорее всего она тоже состояла из слившихся между собой и обособленных сложных вулканоидов (Мелекесцев, 1980), как и Большая гряда. Впоследствии в результате нескольких подвижек «суперпотока» древняя (меловая) островная дуга сместилась отсюда на 100–120 км в сторону океана до своего теперешнего местонахождения.