Исходные данные для расчета профиля бокового ствола скважины №1554:
– магнитный азимут (41 0);
– глубина интервала вырезания «окна» (1450 м)
– проектная глубина по вертикали (1678 м);
– проектное смещение (250 м);
– угол вхождения в пласт (0 0)
Конструкция скважины №1554 представлена в таблице 28.
Для проектируемой скважины №1554 выбираем S‑образный профиль. Данный профиль наклонно-направленной скважины применяется в тех случаях, когда вскрытие продуктивного объекта предусматривается вертикальным стволом.
Таблица 28. Конструкция скважины №1554 Туймазинского месторождения
Обсадная колонна | Условный диаметр, мм | Глубина спуска, м | Глубина цементирования (от устья), м |
Направление | 426 | 17 | 0 |
Кондуктор | 299 | 111 | 0 |
Эксплуатационная | 168 | 1357 | 217 |
Радиус кривизны участка снижения зенитного угла
м, (39)где А – проектное смещение забоя бокового ствола, м;
Н – проектная глубина, м;
Нв – глубина интервала зарезки бокового ствола, м;
R1 – радиус кривизны участка набора зенитного угла, определяемого по значениям интенсивности искривления скважины компоновками бурильного инструмента для бурения боковых стволов, м. /9/
Зенитный угол в конце участка начального искривления
, (40)Результаты расчета профиля бокового ствола скважины №1554 по участкам изменения зенитного угла приведены в таблице 29. На рисунке 21 показан расчетный профиль проектного бокового ствола.
Расчет произведен для четырехинтервального профиля скважины согласно работы /21/.
Таблица 29
Участок | Радиус кривизны, м | Отход, м | Глубина, м | Длина участка по стволу, м |
Набора зенитного угла | 148 | 17,5 | 1477,5 | 39,5 |
Стабилизации | - | 237,5 | 1645,0 | 280,0 |
Спада зенитного угла | 229 | 250,0 | 1674,0 | 54,6 |
3.6 Особенности эксплуатации скважин с боковыми стволами
Практика бурения боковых стволов из обсаженных скважин показала, что этот метод является одним из наиболее эффективных при интенсификации добычи нефти благодаря относительно малой стоимости бурения по сравнению с бурением новых скважин, возможности использования существующей системы обустройства скважины и месторождения в целом. Однако бурение БС производилось и производится без учета требований с позиции последующей их эксплуатации механизированным способом. Вопросы техники и технологии оптимальной эксплуатации таких скважин требуют своего решения.
При эксплуатации скважин с БС могут иметь место следующие варианты.
1 Высокое пластовое давление и глубокий условно вертикальный участок старого ствола, исключающее необходимость подвески насосной установки в боковой ствол.
2 Низкое пластовое давление и небольшой по длине условно-вертикальный участок старого ствола, вынуждающие спускать насосную установку в боковой ствол. В этом случае факторами, осложняющими эксплуатацию механизированным способом, являются участок набора кривизны, характеризуемый градусом кривизны, и наклонный участок, отрицательно влияющие на рабочие характеристики оборудования.
Решение о спуске насосного оборудования должно приниматься с учетом сопоставления ожидаемого дебита при подвеске установки в условно-вертикальном участке и при ее спуске в боковой ствол. В первом случае учитывается вынужденное повышение динамического уровня, снижение коэффициента подачи насоса и повышение газосодержания (из-за снижения давления на приеме); во втором случае учитывается снижение коэффициента подачи установки из-за большого наклона, снижение надежности оборудования при работе в боковом стволе и спускоподъемных операциях.
Также выбор места установки насоса зависит от наличия типоразмеров насосного оборудования на предприятии, так как не все глубинные насосы можно спустить в боковой ствол.
При бурении скважин с БС в зоне набора угла наклона образуются интервалы с малым радиусом кривизны ствола, предъявляющие особые требования к технике эксплуатации скважин. К их числу можно отнести.
1 Необходимость повышения надежности установок при проведении спускоподъемных работ из-за роста вероятности возникновения в узлах установок остаточной деформации, приводящей к поломке во время ее работы.
2 Обеспечение преодоления значительных сил сопротивления движению плунжера насоса, частично деформированного в искривленном участке ствола скважины, в случае спуска в скважину штангового глубинного насоса.
Также одним из факторов, определяющих дальнейшую эксплуатацию скважин с БС глубиннонасосным оборудованием, является то, что крепление бокового ствола осуществляется хвостовиком малого диаметра (102 и 114 мм), что ведет к ограничению применения типоразмеров насосного оборудования, спускаемого в боковой ствол.
В таблице 30 приведены размеры насосного оборудования, а в таблице 31 внутренние диаметры эксплуатационных колонн боковых стволов.
Таблица 30. Размеры насосного оборудования, мм
Насос | Наружный диаметр |
НВ1Б‑29 | 48,2 |
НВ1Б‑32 | 48,2 |
НВ1Б‑38 | 59,7 |
НВ1Б‑44 | 59,7 |
НВ1Б‑57 | 72,9 |
НН2Б‑32 | 56 |
НН2Б‑44 | 70 |
НН2Б‑57 | 84 |
Таблица 31. Размеры НКТ и хвостовиков боковых стволов, мм
Наружный диаметр хвостовика БС | Внутренний диаметр хвостовика БС | Условный диаметр / внутренний диаметр НКТ | Диаметр муфты НКТ |
102 | 88,6 | 60/50 | 73 |
114 | 100,3 | 73/62 | 89 |
Из таблиц видно, что в БС с эксплуатационной колонной диаметром 102 мм возможен спуск вставных насосов типоразмером 29 и 32 мм, невставных – 32 и 44 мм; в БС с эксплуатационной колонной диаметром 114 мм возможен спуск всех вставных и неуставных насосов.
В настоящее время все скважины с БС на Туймазинском месторождении эксплуатируются размещением подземного оборудования в старом стволе, т.е. выше уровня зарезки бокового ствола. Это естественно приводит к уменьшению депрессии на пласт и, в конечном счете, к уменьшению добычи нефти.
На рисунке 22 представлен график зависимости снижения суточного дебита скважин от длины хвостовика по вертикали для разных категорий скважин /20/.
На категории скважины были разбиты по величине потенциального дебита, определяемого по уравнению
(41)где k – коэффициент продуктивности скважин, м3/сут·МПа;
Рпл – пластовое давление, МПа.
Q – потенциальный дебит, м3/сут
Из графиков видно, что при длине хвостовика по вертикали 500 м снижение суточного дебита скважины от потенциального достигает 40%.
1, 2, 3, 4 – для скважин с потенциальным дебитом соответственно 5, 10, 15, 20 м3/сут
Рисунок 22 – Зависимость потерь добычи нефти от длины хвостовика
Для исключения потерь потенциального дебита скважины предложены следующие технологии.
1 Бурение бокового ствола производится с установкой временного моста. После завершения бурения бокового ствола мост разбуривается, и насосное оборудование спускается в старый ствол ниже уровня забуривания бокового ствола. Это позволяет обеспечить работу насосного оборудования в благоприятных условиях по кривизне ствола и сохранить потенциальный дебит. Технологическая схема данной технологии приведена на рисунке 23.
2 Технология забуривания бокового ствола с установкой временного моста также может быть рекомендована для малодебитных (чисто нефтяных) скважин. При этом используется тот же принцип, что и в предыдущем случае, с той лишь разницей, что сохраняется основной ствол, как для притока нефти, так и для размещения насосного оборудования.
2 |
Рисунок 23 – Схема эксплуатации скважины с боковым стволом после разбуривания временного моста
3 В отдельных случаях (при заклинивании в обсадной колонне подземного оборудования, инструмента или смятии колонны и др.) возникает необходимость забуривания бокового ствола с небольшой глубины. В этом случае неизбежен спуск насосного оборудования в БС, а при диаметре БС 102 или 89 мм использование обычной насосной установки с НКТ практически невозможно. В этом случае может быть применена штанговая насосная установка для безтрубной эксплуатации скважин, разработанная институтом БашНИПИнефти (рисунок 24).
При спуске оборудования в БС в диапазоне зарезаки бокового ствола и в интервалах интенсивного набора зенитного угла в штанговой колонне глубинного насоса возникают большие изгибающие напряжения. Для снятия этих напряжений институтом БашНИПИнефти был разработан штанговый шарнир, который позволяет значительно снизить изгибающие напряжения (рисунок 25).