Смекни!
smekni.com

Проектирование строительства эксплуатационной скважины №11 на Северо-Прибрежной площадке Краснодарского края (стр. 4 из 13)

2.2.1 Расчет и обоснование конечного, промежуточного и начального диаметров бурения

Строительство скважины состоит из двух последовательно идущих процессов: бурения скважины и ее крепления. Бурение – это разрушение пород и создание ствола скважины. Цель крепления ствола скважины – во-первых, закрепить ее стенки, сделать их устойчивыми против усилий, создаваемых боковым давлением пород, и, во-вторых, изолировать друг от друга разнородные пласты.

Основным элементом при сооружении скважины является ее технический разрез, т.е. конструкция скважины, которая определяется диаметром, глубиной спуска и числом обсадных колонн, толщиной стенок труб, диаметром самой скважины на разных ее глубинах, высотой подъема цемента за трубами.

Для доведения обсадных колонн до намеченных глубин необходимо определить диаметр ствола скважины. Для этого пользуемся данными практики бурения – величинами зазоров просвета и коэффициентов просвета скважины[3].

Величина зазора или просвета скважины определяется по формуле[4]:

β

где, β – величина зазора или просвета, мм;

Dскв – диаметр скважины, мм;

Dм – наружный диаметр муфты, мм.

Рекомендуемые значения величин зазоров изменяются в пределах от 15 до 50 мм и зависят от жесткости колонны, степени искривления ствола скважины (таблица 2.1).

Таблица 2.1.Значения величин зазоров

Диаметр обсадных труб, мм Зазор между стенками скважины иДиаметром муфт этих труб не более, мм
140245324 203045

Если величину зазора скважины отнести к диаметру скважины, т.е.[4]:

то получим значение коэффициента просвета скважины. Из формулы (2.2) можно получить значение диаметра скважины, выраженное через коэффициент просвета и диаметр муфты[4]:

Если величину 1/(1–2η) обозначить через ƒ, то получим[4]:

Dскв = ƒDм (2.2.4)

Из формулы видно, что диаметр скважины можно определить умножением диаметра муфты обсадной колонны, подлежащей спуску в скважину, на расчетный коэффициент ƒ (таблица 2.2).


Таблица 2.2 Диаметры колонны и муфты и значения коэффициентов

Обсадная колонна Диаметрколонны,мм Диаметрмуфты,мм Значениекоэффициентаƒ
КондукторПромежуточная колоннаЭксплуатационная колонна 324245140 351264160 1,141,171,18-1,35

На основании данных таблицы 2.2 находим, что максимальным диаметром долота под 140-мм колонну будет:

Dmin = 1,19 x 160 = 190,5 мм

Чтобы пропустить долото диаметром 190,5 мм через промежуточную колонну обсадных труб, минимальный диаметр последней должен быть:

Dкол = 190,5 + 6 = 200,5 мм

Для промежуточной колонны, исходя из технологических соображений, выбираем трубы диаметром 245 мм и пробурим ствол скважины под данную колонну долотом согласно формуле (2.2.4):

Dскв = 1,17 x 264 = 308,8 мм

Из стандартных типоразмеров выбираем долото диаметром 295,3 мм.

Чтобы долото диаметром 293,7 мм пропустить через колонну труб, кондуктор должен иметь диаметр 324 мм. Далее определяем диаметр долота под ствол скважины для спуска кондуктора:

Dскв = 1,14 x 351 = 400 мм


Для бурения скважины под кондуктор выбираем долото диаметром 393,7 мм[5].

Таким образом, предусматривается следующая конструкция скважины №11 Северо-Прибрежной:

·Шахтное направление длиной 30 метров и диаметром 530 мм, спускается для предохранения устья от размыва буровым раствором и для обвязки устья с желобной системой, забивается электровибратором;

·Кондуктор диаметром 324 мм спускается на глубину 1020 метров, цементируется до устья. Предназначен для изоляции и предохранения вод хозяйственно-питьевого назначения, перекрытия неустойчивых отложений и установки противовыбросного оборудования.

·Промежуточная колонна диаметром 245 мм спускается на глубину 2450 метров, цементируется до устья. Предназначена для перекрытия неустойчивых отложений понта, меотиса; верхнего, среднего и большей части нижнего сармата и установки противовыбросного оборудования.

·Эксплуатационная колонна диаметром 140 мм спускается на глубину 3025 метров, цементируется в интервале 3025-1850 метров. Служит для разобщения вскрытых пластов, опробования и эксплуатации продуктивного горизонта[5].

2.2.2 Выбор промывочного агента для бурения скважины

Ствол скважины длительное время находится в необсаженном состоянии при значительном всестороннем давлении, что является причиной обвалов и осыпей, вызывающих посадки, затяжки, прихваты бурильного инструмента, недоходы обсадных колонн до проектных глубин. Проходка ствола скважины в неустойчивых породах также осложняет процесс бурения, так как такие породы способствуют обвалам и вследствие этого прихватам бурильного инструмента. Кроме этого, в некоторых районах, подверженных карстообразованию, ствол скважины иногда попадает в огромные каверны[6].

Идеальный буровой раствор, применяемый при бурении скважин, должен отвечать следующим требованиям:

·способствовать повышению скорости проходки;

·позволять поддерживать низкое содержание твердой фазы, благодаря чему до минимума снижается опасность загрязнения пласта;

·повышать устойчивость ствола, ингибировать склонные к осложнениям породы и обеспечивать сохранение целостности выбуренной породы, благодаря чему облегчается ее удаление;

·обеспечивать поддержание на стабильном уровне статического напряжения сдвига и улучшенную очистку ствола без чрезмерных пульсаций давления в процессе спускоподъемных операций;

·проявлять низкую токсичную и высокую термостабильность;

·давать возможность экономить денежные средства, при этом затраты на контролирование и поддержание необходимых свойств бурового раствора с лихвой окупаются.

Для устранения осложнений скважину бурят с применением высококачественной промывочной жидкости. Непрерывная циркуляция промывочной жидкости в стволе скважины обеспечивает не только очистку забоя от выбуренной породы, но и охлаждение и смазку долота.

Глинистые растворы, применяемые в качестве промывочной жидкости, глинизируют стенки скважины и удерживают во взвешенном состоянии выбуренные частицы породы в покоящейся жидкости, т.е. в период прекращения циркуляции. Они являются одним из наиболее распространенных видов промывочных жидкостей, применяемых при бурении нефтяных и газовых скважин. Обработанные химическими реагентами они образуют устойчивую суспензионно-коллоидную дисперсную систему с небольшой водоотдачей и необходимыми структурно-механическими качествами. При нормальных условиях бурения нетрудно регулировать их параметры[9].

Глинистый раствор – это смесь мелких частиц глины с водой, приготовленная так, что частицы глины находятся во взвешенном состоянии.

Глинистый раствор приготовляется непосредственно на буровой при помощи глиномешалок[8].

Для выбора бурового раствора воспользуемся информацией о горных породах, их проницаемости, пластовых давлениях и номинальных диаметрах скважины представленных в таблицах 1.1 и 2.2. В соответствии с геолого- техническими условиями определяем компонентный состав бурового раствора, одинаковый для всех интервалов: ингибированный полимер-глинистый раствор, в состав которого входят бентонитовый глинопорошок, вода, утяжелитель (барит), ССБ, ФХЛС, нефть, графит, хроматы, эмульгаторы, пеногаситель, КМЦ.

Технологические параметры бурового раствора приведены в таблице 2.3.

Таблица 2.3 Технологические параметры бурового раствора

Интервал Параметры раствора Реолог. св-ва Содержание
от, м до, м плот-ность,кг/м³ услов.вяз-тьс водо-отдачасм³/30´ пласт.вяз-тьмПа*с динамнапряжсдв,дПа колоидфазы песка твердой фазы
всего
об. % вес,%
01020201022322312239124892581269728032907 10202010223232123291248925812697280329073076 11501180126013601460156016401720186019802130 35-4535-4535-4535-4540-5040-5040-5040-5040-5040-6040-60 4-53-3,53-3,53-3,53-3,53-3,53-3,53-3,53-3,53-3,53-3,5 2030303040454545505050 70707070859090100120140150 3,03,03,03,02,92,72,62,52,32,22,0 21111111111 9,411,316,322,528,835,040,045,053,861,370,6 21,224,833,543,051,258,363,468,075,180,486,2

2.3ТЕХНИКА БУРЕНИЯ

2.3.1 Определение оптимальной массы бурильной колонны

2.3.1.1 Расчет бурильных труб, УБТ, компоновок бурильной колонны

Бурильная колонна является связующим звеном между долотом, находящимся на забое скважины, и буровым оборудованием, расположенным на поверхности. Она предназначена для подвода энергии (механической, гидравлической, электрической) к долоту, обеспечения подачи бурового раствора к забою, создания осевой нагрузки на долото, восприятия реактивного момента долота и забойного двигателя.

Основные элементы, составляющие бурильную колонну, — ведущая труба (квадратная штанга), бурильные трубы, бурильные замки, муфты, переводники, центраторы бурильной колонны, утяжеленные бурильные трубы (УБТ).

Для передачи вращения БК от ротора или реактивного момента от забойного двигателя к ротору при одновременном осевом перемещении БК и передаче бурового раствора от вертлюга в БК служат ведущие бурильные трубы[6].