Смекни!
smekni.com

Особенности термического режима рек (стр. 13 из 18)


Таблица 5.4. Средние градиенты температуры воды в створах рр. Волга и Вазуза

№ профиля 0 (Вазуза) 0 (Волга) 2 4 5 6 7
gradθ,0C/м 0,12 0,015 0,09 0,06 0,09 0,02 0,04 0,01 0,01

Измерения автора на р. Оке в июне 2007 г. обнаружили максимальное изменение температуры воды от 0,23 до 0,690С в разных поперечных сечениях (рис. 5.2). Средняя величина аномалий температуры для всей реки 0,360С. Средний по каждому профилю поперечный градиент температуры воды изменялся от 0,00166 до 0,005230С/м при среднем значении 0,00310С/м (эта же величина является средней характеристикой gradθ для всей реки). Величина максимального gradθ изменяется для разных профилей от 0,0028 до 0,140С/м. Наибольшая величина градиентов чаще всего характерна для прибрежных зон водного потока: без учета береговых значений средний градиент изменения температуры воды в поверхностном слое для Оки равен 0,00150С/м, т.е., как и на Волге, Вазузе, прибрежные зоны потока обеспечивают поперечную изменчивость температуры воды на 50%.

В периоды дневного, синоптического или сезонного нагревания температура воды быстрее повышается у берегов, чем на стрежне потока (рис. 5.1). В периоды ночного, синоптического или сезонного охлаждения водной массы температура у берегов ниже, чем на стрежне потока (рис. 5.3). Повышенная изменчивость температуры прибрежной части рек связана не только с меньшей глубиной водного потока в этой части русла, но и, вероятно, с влиянием температуры берегов, которые, в силу меньшей теплоемкости, реагируют на изменение составляющих теплового баланса земной поверхности быстрее, чем вода.

5.4 Аналитические результаты

В соответствии с формулой (3.22) температура воды в каждой точке поперечного профиля изменяется в зависимости от

,
, глубины потока и шероховатости русла
, а также от коэффициента а1. Использование формулы (3.22) для описания распределения температуры воды по ширине потока показало, что при а1=427 поперечные аномалии температуры воды равно нулю. Реальные поперечные профили температур уравнение (3.22) воспроизводит при а1 = 0,2–0,4.

Проверка эффективности уравнения (3.22) проведена, в частности, для условий Оки. Измерения здесь проводились в дневные часы. Температура воздуха днем менялась от 200С (утро, вечер) до 300С (полдень). Наилучшая аппроксимация фактического распределения поверхностной температуры воды уравнением (3.22) достигается при а1=0,1. Наибольшие отклонения фактических и расчетных значений температуры воды в поперечном сечении в этом случае наблюдаются при h ¹ 1 м. При h > 1 м расчетные температуры превышают фактические по всему сечению и изменение температур по ширине потока становится более равномерным. При h < 1 м фактические температуры оказываются выше, а расчетное распределение температур в потоке более однородным. Поэтому для устранения причины увеличения погрешностей расчета нормируем соответствующие члены уравнения (3.22) на глубину h=1 м. В этом случае расчетная зависимость приобретает вид

(5.1)

где

поверхностная температура воды,
– температура воды в «центре» потока
– разница между прибрежной температурой воды и
,
- относительная полуширина реки, а1 – коэффициент.

Результаты сопоставления фактических и расчетных значений θ обнаруживают их хорошую визуальную сходимость (рис. 5.4). Количественная оценка результатов сходимости теоретического и расчетного распределения поверхностной температуры в этом створе дана в табл. 5.5. Оказалось, что среднеквадратическое ошибка расчета σ = 0,0150С. Это малая величина среднеквадратического ошибки по отношению к точности измерений. Однако эта величина оценивалась по 7 точкам, поэтому статистика неустойчивая.

Таблица 5.5. Расчетные и измеренные поверхностные температуры воды в р. Ока

Температура Вертикали (нумерация от левого берега)
1 2 3 4 5 6 7
Температура расчетная qр
23,29 23,18 23,12 23,11 23,13 23,21 23,39
Температура фактическая qф
23,29 23,19 23,10 23,10 23,13 23,23 23,39
(qр -qф)/ qф 0 4*10-4 8*10–4 4*10-4 0 8*10-4 0

Уточнение коэффициента турбулентной диффузии не дает заметного улучшения в согласовании расчетных и фактических значений. Фактическое значение коэффициента А для участка р. Оки около д. Трегубово равно 0,1v/М. Больший эффект достигается корректировкой коэффициента а1, подбираемого в ходе численных экспериментов (а1=0,06–0,1). При значении коэффициента а1=427 получается однородное распределение поверхностной температуры воды по ширине потока.

При расчетах функции θ=θ(z) эффективнее (вместо выражения (3.22)) использовать аналогичное уравнение, в котором значение глубины потока h заменено на bi (i – левая или правая часть поперечного сечения потока). В этом случае можно не производить замену ширины потока z на относительное удаление от берега

в дифференциальном уравнении (3.19). Дополнительное преимущество возникает в связи с тем, что отпадает проблема снижения эффективности уравнения (3.22) при
. В результате решение уравнения (3.19) сразу приобретает вид уравнения (5.1).

Из уравнения (5.1) следует, что распределение температуры в поперечном сечении зависит также от величины

М = 0,7Cш+6 (5.2)

при

и

M = 48 = const (5.3)

при

– параметра, имеющего размерность м0,5с-1 и зависящего от коэффициента Шези (Cш). Коэффициент Cш устанавливается в зависимости от глубины потока h и коэффициента шероховатости n (Караушев, 1969). Учет распределения глубины по ширине потока приводит к увеличению отклонений в расчетных температурах воды от измеренных. При а1 = 0,08 эти ошибки становятся незаметными.

При отсутствии данных промерных работ в поперечном створе реки и наличии измеренной температуры, при расчетах можно считать, что h=const=1 м. Численные эксперименты показали, что изменение средней глубины потока в пределах от 0,7 до 20 м приводит к ошибке в расчете температуры воды не более чем на 0,10С.

Формула (5.1) может быть преобразовать к виду

, (5.4)

где

– поверхностная температура воды у берега,
– поверхностная температура воды в температурном «ядре» потока. Измерения прибрежной температуры воды обычно проводятся на расстоянии 5–10 м от берега и поэтому, строго говоря, она отличается от истинного значения
. Поэтому эту температуру необходимо рассчитывать по имеющимся данным, если известно положение точки измерений
. Считая, что величины а1 и М, а также температура в «ядре» потока известны, выражение (5.2) можно преобразовать для расчета

(5.5)

Для оценки эффективности формулы (5.5) проведены соответствующие расчеты для всех температурных створов на р. Ока. При этом оказалось, что для всех створов параметр а1 = 0,06–0,1. Результаты сравнения расчетных и фактических величин прибрежной температуры характеризует табл. 5.6. Так как точность измерений температуры воды составляла 0,010С, то отклонения, не превышающие эту величину, обозначались неравенством < 0,010C. Среднее отклонение расчетных величин от измеренных составило 0,0310С, среднеквадратическое отклонение – σ = 0,049 0С. Это означает, что среднее отклонение расчетной температуры воды от фактической составляет 0,310С, а ошибка расчета отклонения (достоверность определения ошибки расчета) составляет 0,490С.