Смекни!
smekni.com

Особенности термического режима рек (стр. 10 из 18)

Рис. 4.14. Гистограмма распределения максимального вертикального градиента температур для условий р. Ока

Рис. 4.15. Изменчивость локальных значений градиента температуры по глубине р. Ока


Рис. 4.16. Распределение температуры воды по глубине на р. Ока в пределах руслового карьера

Данные, полученные на р. Протве, характеризуют разнообразие условий формирования эпюр температуры. Оценка величины изменения температуры воды на вертикалях (рис. 4.17) показывает, что наиболее часто встречаются эпюры температур с величиной Δθэ = 0,01 – 0,08. В большинстве случаев они формируются в пределах водной массы Протвы и Исьмы. Все вертикали, для которых изменение температуры воды Δθэ > 0,10С, находятся в зоне смешения. Следовательно, смешение вод сопровождается своеобразным «гашением» турбулентности, что и обусловливает большую вертикальную неоднородность водной массы в зоне смешения речных вод. Часть вертикалей, для которых величина Δθэ < 0,10С находится в зоне смешения водных масс рек (рис. 4.18). Средняя температура воды здесь выше, чем в р. Исьма (на 1–1,50С), и ниже по сравнению с Протвой. Это свидетельствует о формировании подзоны смешения с чертами процесса, соответствующими рр. Протва и Исьма.


Рис. 4.17. Изменчивость величины Δθэ на разных вертикалях р. Протва, июнь 2007 г.

Рис. 4.18. Распределение величины Δθэ на разных вертикалях р. Протва и р. Исьма


Рис. 4.19. Эпюры в водной массе р. Протва (1), р. Исьма(2) и в зоне смешения

Сравнение температурных эпюр в р. Протва, р. Исьма и в зоне их смешения (рис. 4.19) показывает, что форма эпюр в водных массах этих рек значительно слабее выражена, чем в зоне смешения. Величина максимального изменения температуры воды Δθэ в зоне смешения может достигать 1,380С, тогда как в Протве и Исьме эта величина обычно <0,10C.

Вертикальные градиенты температуры чаще всего (в 60% случаев) меньше 0,10С/м. Градиенты более 20С/м встречаются в 7% случаев. Самые большие величины gradθ наблюдаются в приповерхностном слое воды при переходе от глубины 0,03 к 0,1 м, здесь градиенты температуры достигают 7,710С/м, однако встречаются и случаи gradθ = 0. Это свидетельствует о большом разнообразии теплового состояния поверхностного слоя, зависящим, в частности, от изменения глубины реки.

Анализ данных, полученных на плесе и перекате (рис. 4.20) в р. Протва свидетельствуют о подобии градиентов температуры воды и разности Δθэ на разных вертикалях. Для плеса gradθ для различных вертикалей меняется от 0 до 0,030С, а для переката эта величина меняется от 0 до 0,050С, т.е. различий между ними практически нет. В приповерхностном слое (0,03 – 0,1 м) величина градиента температур составляет 0,530С/м. Она отражает краткосрочную синоптическую обстановку теплового взаимодействия между водной массой реки и приводным слоем атмосферы.

Выявленные особенности изменения температуры воды по глубине рр. Ока, Протва и Исьма не являются характерными для всех рек. В частности, для многих рек свойственна большая вертикальная неоднородность температур. Экстремально большие различия температуры воды по глубине характерны, например, для истока Ангары (Верещагин, 1933). Максимальная разность температур по глубине реки здесь достигает 70С, что связано с озерным генезисом ее вод. Большие вертикальные температурные градиенты характерны и для некоторых устьев крупных северных рек. В районе Усть-Енисейского порта придонная и поверхностная температуры могут отличаться на 60С (Соколова, 1951). По ее же данным на р. Лена (с. Кюсюр) в период летнего нагревания водной массы разность температуры воды поверхностного и придонного слоя воды достигает 0,40С. В период ее охлаждения эта разность еще больше – 1,10С, при этом придонная температура воды оказывается больше поверхностной. На р. Лена у с. Солянка наибольшие положительные разности Δθэ наблюдаются в июне, июле и августе (период нагревания) и достигают 1,550С. В период последующего охлаждения температура воды в потоке выравнивается, а в конце сентября и начале октября возникает обратная температурная стратификация (Δθэ > -0,60С).

Обработка данных наблюдений на р. Оке позволяет выделить две характерные формы эпюр температуры: равномерную и неравномерную. Неравномерная эпюра температуры воды включает три зоны: приповерхностная, придонная и центральная. В первой зоне характер изменения θ зависит от теплообмена на границе «вода-воздух», во второй – от условий теплообмена на границе «вода-грунт». В пределах этих двух зон характерны три возможные формы эпюры по изменению температуры с глубиной: убывающая, возрастающая и однородная. Эпюра центральной зоны водной массы в общем случае имеет произвольную форму, зависящую от локальных условий турбулентного перераспределения объемов воды с разной температурой. Следовательно, можно выделить 9 возможных типов эпюры температуры, соответствующих особому характеру распределения θ в приповерхностном и придонном слоях водной массы (рис. 4.21). В схематическом виде они соответствуют разнообразию направлений переноса потоков тепла на границах водной массы с ложем реки и атмосферой, физических механизмов изменения температуры воды в центральной части водного потока, которые требуют выявления и изучения. Поэтому для схем на рис. 4.20 центральная зона условно дана пунктирной линией, соединяющей приповерхностную и придонную зоны эпюры температуры воды.

Рис. 4.21. Возможные типы (1,2,3,4,5,6,7,8,9) температурных эпюр на границе водной массы и русел рек, приземного слоя атмосферы

Форма нижней части эпюры зависит от направления потока тепла, формирующегося при поступлении грунтовых вод или тепловом взаимодействии речной водной массы с грунтами. Если поток тепла на границе «вода-ложе» отсутствует, то формируются эпюры типа 1,2,3. Если он направлен в сторону водной массы (ее теплосодержание возрастает), то преобладает формы эпюр типа 4,5,6. Такие типы эпюр могут возникать в зимний период при разгрузке относительно теплых грунтовых вод или в период весеннего нагревания, когда ложе потока нагревается быстрее, по сравнению с водной массой. Если поток тепла направлен от водной массы к грунтам, то происходит охлаждение водной массы. Это может происходить в летний период при поступлении в основной поток охлаждающих грунтовых вод и в период осеннего охлаждения, когда ложе потока охлаждается быстрее, чем водная масса. Типы эпюр 3,6,9 формируются при равенстве потоков тепла от грунта к водному объекту и в обратном направлении.

Форма верхней части эпюры зависит от многих факторов, влияющих на теплообмен на границе «река-атмосфера». Типы 1,4,7 соответствуют охлаждению водной массы за счет теплообмена с атмосферой. На реках такие формы эпюры формируются в период суточного, синоптического или сезонного охлаждения водной массы. Типы эпюр 2,5,8 в естественных условиях формируются в период суточного, синоптического или сезонного нагревания водной массы. Типы эпюр 3,6,9 возникают в том случае, если тепловое взаимодействие атмосферы и речной водной массы уравновешено. Они могут формироваться в утренние и вечерние часы, когда интенсивность солнечной радиации компенсируется эффективным излучением воды. Кроме того, нередко формирование такой формы эпюры у берегов при малых глубинах и малых скоростях течения. При очень больших скоростях течения происходит практически полное смешивание различных слоев водной массы, поэтому в любую погоду, независимо от сезона, эпюра температур выражена слабо.

Основные типы эпюр температуры хорошо соответствуют реальному распределению температуры у поверхности и у дна водных потоков. Для р. Невы, например, наименее изменчивой по форме частью эпюры оказалась придонная зона водного потока. Наоборот, температура воды в поверхностном слое отличается максимальной изменчивостью (рис. 4.22). В этом слое наблюдается изменение θ во времени, абсолютной величины градиента температуры по глубине. С началом дневного нагревания водной массы (с 7:00) тип эпюры температур постепенно изменяется с типа 7 на 8.

Температура воды в каждой точке вертикали (в соответствии с формулой (3.17)) изменяется в зависимости от характерных температур

,
, глубины потока и коэффициента шероховатости русла (
), параметра а1. При использовании этой формулы для описания распределения температуры воды на вертикали оказалось, что если считать а1=427, то изменение температуры воды по вертикали равно нулю. Соответствие с фактическими эпюрами достигается при а1=0,06–0,2.

Изменение глубины потока h и шероховатости n относительно слабо влияют на изменение относительного распределения температуры воды. Например, при увеличении глубины потока с 1 м до 10 м (прочие условия равны, θ1=200С, θп=20,30С) изменение температуры на глубине 0,1h составило -0,0005% (уменьшилось на 0,0120С), на глубине 0,2h изменение температуры равно -0,0002% (уменьшилось на 0,0040С). При дальнейшем увеличении относительной глубины различия температуры становятся еще менее заметными.