Смекни!
smekni.com

Технология добычи нефти (стр. 1 из 7)

Содержание

Введение

Технологическая часть

1. Физико-химические свойства пластовых жидкостей и газов

2. Состояние борьбы с потерями на объектах нефтяной отрасли

3. Источники потерь углеводородов

4. Оценка величины потерь углеводородов

5. Выводы и предложения по уменьшению потерь углеводородов

6. Эффективность использования систем УЛФ

7. Опыт применения УЛФ

8. Общая характеристика системы УЛФ

9. Технологическая схема система УЛФ

10. Технологическое оборудование системы УЛФ

11. Контроль и автоматизация технологических процессов

12. Нормальная работа системы УЛФ

13. Аварийная остановка системы УЛФ

14. Ремонт УЛФ

15. Расчет потерь при «малых» и «больших» дыханиях для резервуаров УКПН

16 Расчет количества выбросов вредных веществ в атмосферный воздух с РВС УКПН-4 за 2006 г.

Мероприятия по охране окружающей среды и труда

Заключение

Список литературы

Введение

Вопросам потерь нефти непосредственно на объектах ее добычи, сбора и подготовки нефти не придавалось достаточного значения. Однако, от этого острота и необходимость его решения никогда не уменьшалась. Значительны эти потери на нефтепромыслах. Развитие техники и технологии сбора и подготовки нефти на помыслах, большие объемы добычи нефти на вновь открытых месторождениях, реконструкция системы внутрипромыслового транспорта нефти и газа вызывают необходимость и изучения природы и причин из возникновения и разработки мероприятий по их сокращению.

Основными источниками загрязнения атмосферы в нефтепромысловом хозяйстве являются испарения, обусловленные негерметичностью оборудования и сооружений.

В последнее время установки комплексной подготовки нефти оснащаются системой улавливания легких фракций, которая основана на сборе продуктов испарения.

Система улавливания легких фракций обеспечивает сохранность углеводородов, устраняет потери нефти и выбросы вредных веществ в атмосферу, повышает надежность резервуарного хозяйства за счет снижения коррозионной активности газовой среды в результате предотвращения попадания воздуха в резервуары. Повсеместная герметизация с помощью систем УЛФ промысловых резервуаров позволило сократить потери углеводородов из них и внести существенные изменения в технологию ступенчатой сепарации продукции скважин.


Технологическая часть

1.1 Физико-химические свойства пластовых жидкостей и газов.

Свойства и состав нефти изучены по глубинным и поверхностным пробам. Свойства пластовой нефти пласта DIII оценивались по результатам исследования поверхностных проб. Оцененное значение вязкости составило 3,4 мПа∙с, плотности – 0,806 т/м3, давление насыщения – 7,5 МПа..

Исследования девонских нефтей показали, что нефти пласта DII несколько тяжелее, более газонасыщенны и имеют повышенное давление насыщения. Распределение давления насыщения нефти газом по данным Желонкина А.И. показало, что давление насыщения пласта DI на Туймазинской площади уменьшается от центра залежи к периферии (от 9,4 до 8,2 МПа), за счёт чего и отмечается некоторое увеличение плотности и вязкости нефти. На Александровской площади нефть в пластовых условиях имеет меньшую плотность и вязкость.

Плотность разгазированной нефти пласта DII по новым данным составила 851 кг/м3, вязкость при 20 оС - 9,8 мПа∙с, содержание серы - 1,6 %. Пластовые воды терригенного девона относятся к хлоркальциевому типу. Общая их минерализация составляет 266 г/л, а плотность достигает 1190 кг/м3. Соли, находящиеся в растворе, представлены практически только хлоридами, среди которых преобладает хлорид натрия. В растворе находится около 200 мг/л закисного железа, бария до 100 мг/л и стронция от 100 до 500 мг/л. Химическая характеристика вод приведена в таблице 1.2. Воды пластов DI и DII имеют близкий солевой состав и по отдельным анализам различить их затруднительно.

Средняя плотность разгазированной нефти пласта DI по двум определениям составила 863 кг/м3, вязкость при 20оС - 20,0 мПа∙с при диапазоне изменения 7,0 - 33,0 мПа∙с; содержание серы - 1,5 %, смол силикагелевых - 12,7 %, асфальтенов и парафинов по одной пробе соответственно 2,97 и 3,12 %.

Характеристика поверхностных нефтей девонских пластов показывает, что нефти пластов DI, DII, DIII, DIV лёгкие (847 – 856 кг/м3), маловязкие (8,7 - 10,9 мПа∙с), сернистые (1,1 - 1,5 %), смолистые (8,95 - 14,1 %), парафинистые (4,8 - 5,5 %).

Данные исследований показывают, что нефти девонских пластов DI, DII и DIV схожи между собой и характеризуются следующими свойствами: плотность - 847 - 856 кг/м3, вязкость при начальном пластовом давлении в пласте DI - 1,95 - 3,22 мПа·с, в пласте DII - 2,46 - 3,18 мПа·с, в пласте DIV - 2,9 - 3,22 мПа·с. Средние значения давления насыщения составляют: в пласте DI - 9,12 МПа, в DII - 9,57 МПа и в DIV - 8,62 МПа. Средние значения газосодержания нефтей равны: для пласта DI - 62 м3/т, DII - 64 м3/т, DIV - 55 м3/т.

Свойства нефтей фаменского яруса определялись по поверхностным пробам, отобранным из трёх скважин. Нефть тяжёлая - 910 кг/м3, высоковязкая - 89,8 мПа∙с, высокосернистая - 4,45 %. По своим параметрам она близка к нефтям терригенной толщи нижнего карбона и турнейского яруса. Параметры пластовой нефти оценивались по результатам исследования поверхностных проб. Вязкость пластовой нефти составила 37,8 мПа∙с, плотность – 0,899 т/м3, давление насыщения – 4,3 МПа.

Свойства пластовой нефти турнейского яруса (C1t) изучены по двум пробам, отобранным из скважины 1382. В пластовых условиях плотность равна 868 кг/м3, вязкость - 17,4 мПа∙с, газосодержание - 10,4 м3/т.

В компонентном составе нефтяного газа преобладает метан, присутствует сероводород. В поверхностных условиях нефти турнейского яруса тяжёлые - 893 кг/м3, вязкие - 32,3 мПа∙с, смолистые - 13 %, сернистые - 2,8 %, парафинистые - 3,7 %. Пластовая нефть терригенной толщи нижнего карбона характеризуется следующими свойствами: плотность - 864 кг/м3, вязкость - 12,4 мПа∙с, давление насыщения - 6,3 МПа, газосодержание - 22,0 м3/т. В газах преобладают метан, этан, пропан. Сероводород присутствует в количестве 0,8 - 1,4 %, в пластовой нефти- 0,15 %.

Газ пласта DIV отличается меньшим содержанием азота и пропана и большим содержанием метана и этана. Состав газа пластов DI и DII практически одинаков. Характерным для девонских попутных газов является: отсутствие сероводорода, относительная плотность выше 1, наличие азота, гелий и аргон. Газы Туймазинского месторождения относятся к жирным.

Пластовые воды девонских пластов представляют собой хлоркальцевые рассолы. Общая минерализация их составляет 275 г/л, а плотность достигает 1190 кг/м3. Газосодержание в водах составляет 2,73 м3/т. Характерной особенностью девонских вод является значительное содержание в них закисного железа и повышенное содержание бром. Среди анионов преобладает содержание ионов хлора 4,49 млн. молей/м3, из катионов значительно содержание натрия - 3,3 млн. молей/м3. Воды горизонтов карбона характеризуются хлоркальциевым, хлорнатриевым типами. Встречается сероводород. Воды пермских отложений сульфатнонатриевого типа.

Компонентный состав газа приведен в таблице 1.

Таблица 1–Компонентный состав газа

Наименование компонентов и показателей Значение (% от объема)
N2 15,41
CH4 19,25
C2H6 15,65
C3H8 17,96
4Н10 iC4H10 3,02
NC4H10 4,26
iC5H12 1,51
C6+высш. 1,46
СО2 0,66

На месторождениях республики Башкортостан добываются девонские и высокосернистые нефти. До недавнего времени сбор, транспорт и подготовка девонских нефтей осуществлялись с использованием негерметичных резервуаров большого объема, работающих при атмосферных давлениях.

Технологические схемы сбора, транспорта и подготовки продукции скважин были разработаны с учетом объемов добычи нефти и газа, их физико-химических и реологических свойств в соответствии с этими характеристиками определялось число ступеней сепарации газа, отделения и утилизации основного объема пластовой воды, выбиралось количество и конструкция технологического оборудования в системе сбора, транспорта и подготовки нефти. Однако, если сепараторы изначально были герметичными, то резервуары на товарных парках долгие годы оставались негерметичными, являясь основным источником потерь легких фракций нефти за счет испарения через неплотности, имеющиеся по проектным рещениям.

1.2 Состояние борьбы с потерями на объектах нефтяной отрасли

Около 90 % всех видов загрязнения атмосферы приходится на деятельность человека в сфере разработки и утилизации энергоресурсов. Для нефтяной промышленности в негативном воздействии на воздушный бассейн среди добывающих и перерабатывающих отраслей составляет 5,1 %. Но не только атмосфера, а и другие компоненты окружающей среды подвержены техногенному воздействию. По ориентировочным оценкам 75% углеводородных загрязнений приходится на атмосферу, 20% на поверхностные и подземные воды и 5% накапливается в почвах. В свою очередь выбросы и сбросы углеводородных загрязнителей являются следствием незавершенности производственных циклов, неотлаженности технологий и негерметичности используемых оборудования и сооружений[1].

До конца восьмидесятых годов природоохранная деятельность в нефтяной промышленности не носила целевой направленности в части изучения влияния и оценки воздействия нефтяных загрязнений на состояние биосферы, а имела ресурсосберегающий характер. Выполнение плановых нефтегазосберегающих технико-технологических и организационных мероприятий отражалось в снижении действующих нормативов технологических потерь нефти и нефтяного газа. Характеризуя в целом технический уровень нефтепромысловых процессов, нормативы потерь не могут быть использованы для установления величины выбросов в атмосферу, т.к. не дифференцированы по газовой и жидкой составляющим потерь и, устанавливались как средневзвешенные по нефтепромысловым процессам без градации по источникам выделения. Поэтому они методически не вписываются в унифицированную систему работ по нормированию выбросов загрязняющих веществ, являющаяся обязательной для действующих, проектируемых и реконструируемых предприятий независимо от ведомственной принадлежности. В то же время нормативы потерь являются важными показателями производственной деятельности предприятий нефтяной промышленности и используются при учете выработки запасов углеводородных ресурсов и количества добытой нефти.