Смекни!
smekni.com

Теория пары снимков (стр. 2 из 3)

В дальнейшем эту систему координат будем называть просто системой координат модели.

Условие ( 2) связывает между собой только направления векторов и выполняется при любых значениях их модулей. Поэтому значение модуля вектора

можно выбрать произвольно. Направление вектора
определяется двумя независимыми величинами. В качестве этих величин можно выбрать координаты bz и bу вектора
, коллинеарного вектору
, задав величину координаты bx произвольно.

В частном случае величину bx можно выбрать равной 1.

При этом направление вектора

будут определять величины:

и
.

Выражение (2) в этом случае будет иметь вид:

( 3)

В уравнении (3)

,

где i – номер снимка, а А’1 – ортогональная матрица, элементы aij которой являются функциями угловых элементов ориентирования i-го снимка wi’,ai’,Ài’ относительно системы координат модели ОМХМYMZM.

В выражении (3), которое является уравнением взаимного ориентирования в общем виде, куда кроме координат соответственных точек, измеренных на стереопаре снимков, и элементов внутреннего ориентирования входят 8 параметров by, bz, w1’, a1’, À1’, w2’, a2’, À2’, которые определяют угловую ориентацию базиса фотографирования и стереопары снимков относительно системы координат модели ОМХМYMZM.

Причем параметры w1’ и w2’ определяют поворот снимков стерепары вокруг оси ХМ, параметры bz, a1’, a2‘ – поворот базиса фотографирования и стереопары снимков вокруг оси YM, а параметры by, À1’, À2 ‘– поворот базиса фотографирования и стереопары снимков вокруг оси ZM.

Однако, из этих 8 параметров только 5 определяют взаимную угловую ориентацию базиса фотографирования и стереопары снимков.

Условие (3) выполняется при любой ориентации системы координат модели ОМХМYMZM. Следовательно, ее можно ориентировать таким образом, чтобы 3 из 8 параметров стали равны нулю.

Очевидно, что в общем случае можно сделать равным нулю только один из параметров, входящих в три группы параметров:

– w1’, w2’;

– bz, a1’, a2‘;

– by, À1’, À2’.

Таким образом, в качестве элементов взаимного ориентирования можно выбрать любую комбинацию из восьми параметров by, bz, w1’, a1’, À1’, w2’, a2’, À2’, кроме комбинаций, в которые одновременно входят две тройки параметров bz, a1’, a2‘ и by, À1’, À2’, а также пара параметров w1’ и w2’.

Рассмотрим наиболее распространенные системы элементов взаимного ориентирования:

Система a1’, À1’, w2’, a2’, À2. Если принять при этом, что by=bz= w1’=0, то уравнение (3) имеет вид:

. ( 4)

Система by, bz, w2’, a2’, À2’. Если при этом принять, что w1’= a1’= À1’=0, то уравнение (3) будет иметь вид:

; ( 5)

так как

.

Комментарий. 3 оставшихся из 8 параметров после выбора 5 элементов взаимного ориентирования задают ориентацию системы координат модели ОМХМYMZM. Например, выбрав систему элементов взаимного ориентирования by, bz, w2’, a2’, À2’ и приняв, что w1’= a1’= À1’ =0, мы таким образом задаем систему координат модели ОМХМYMZM, которой параллельны осям x, y, z системы координат первого снимка стереопары S1x1y1z1. В общем случае значения трех параметров можно задавать произвольно.

5. Определение элементов взаимного ориентирования

Для определения элементов взаимного ориентирования в качестве исходного используют уравнения взаимного ориентирования ( 4.3)

.

Каждая точка, измеренная на стереопаре снимков, позволяет составить одно уравнение (4.3), в которое, помимо измеренных координат точек на стереопаре снимков, элементов внутреннего ориентирования и трех параметров, задающих ориентацию системы координат модели, входят 5 неизвестных элементов взаимного ориентирования.

Очевидно, что для определения элементов взаимного ориентирования необходимо измерить на стереопаре снимков не менее 5 точек.

В качестве примера рассмотрим определение элементов взаимного ориентирования by, bz, w2’, a2’, À2’.

В связи с тем, что уравнения ( 4.3) не линейны, их предварительно приводят к линейному виду и переходят к уравнению поправок:

. ( 1)

В уравнении поправок коэффициенты ai частные производные от функции ( 4.3) по соответствующим аргументам, а ℓ– свободный член.

Значения коэффициентов аi в уравнении ( 1) вычисляют по следующим известным значениям:

– измеренным координатам точек на стереопаре снимков – хi, yi;

– элементам внутреннего ориентирования снимков fi, x0i, y0i;

– 3 параметрам, задающим ориентацию системы координат модели (в нашем случае w1’, a1’, À1’) и приближенным значениям элементов взаимного ориентирования.

Свободный член ℓ вычисляется по формуле ( 4.3) таким же образом.

Полученную систему уравнений поправок решают методом приближений, а в случае, если измерено более 5 точек по методу наименьших квадратов (под условием VTPV=min). В результате решения находят значения элементов взаимного ориентирования.

Критерием, по которому принимается решение о завершении итерраций, могут являться величины поправок к определяемым неизвестным или величины остаточных поперечных параллаксов, которые для каждой измеренной точки вычисляются по формулам:

; ( 2)

где

.

Величина qост представляет собой разность ординат измеренных точек на стереопаре снимков, приведенных к идеальному случаю съемки, то есть q=y1-y2.

Необходимо отметить, что при отсутствии ошибок построения снимка и ошибок измерений величина q должна быть равна 0.

При определении элементов взаимного ориентирования оптимальным вариантом считается измерение 12-18 точек на стереопаре снимков, расположенных парами или тройками в 6 стандартных зонах (рис. 1).


Рис. 1

- главная точка снимка

- стандартно расположенная зона

В этом случае получается наиболее точное и надежное определение элементов взаимного ориентирования и появляется возможность локализации грубых измерений.


6. Построение фотограмметрической модели

Построение фотограмметрической модели заключается в определении координат точек объекта по измеренным на стереопаре снимков координатам их изображений в системе координат модели ОМХМYMZM.

Определение координат точек модели производится по формулам прямой фотограмметрической засечки (см. раздел 1).

При этом координаты центра проекции S принимаются произвольными (обычно

0). Также произвольно (но не равной 0) выбирается величина ВХ. В большинстве случаев практики величину ВХ принимают равной:

;

где b – базис фотографирования в масштабе снимка,

m – знаменатель масштаба снимка.

Остальные значения элементов внешнего ориентирования определяют по 8 параметрам by, bz, w1’, a1’, À1’, w2’, a2’, À2’, 5 из которых являются элементами взаимного ориентирования, а 3 определяют ориентацию системы координат модели.

При этом

.

Например, если были определены элементы взаимного ориентирования a1’, À1’, w2’, a2’, À2’ и при этом величины параметров by, bz, w1’ были приняты равными нулю (by=bz=w1’=0), то BY=BZ=0, w1=0, a1=a1’, À11’, w2=w2’, a2=a2’, À22’.