В дальнейшем эту систему координат будем называть просто системой координат модели.
Условие ( 2) связывает между собой только направления векторов и выполняется при любых значениях их модулей. Поэтому значение модуля вектора
можно выбрать произвольно. Направление вектора определяется двумя независимыми величинами. В качестве этих величин можно выбрать координаты bz и bу вектора , коллинеарного вектору , задав величину координаты bx произвольно.В частном случае величину bx можно выбрать равной 1.
При этом направление вектора
будут определять величины: и .Выражение (2) в этом случае будет иметь вид:
( 3)В уравнении (3)
,где i – номер снимка, а А’1 – ортогональная матрица, элементы aij которой являются функциями угловых элементов ориентирования i-го снимка wi’,ai’,Ài’ относительно системы координат модели ОМХМYMZM.
В выражении (3), которое является уравнением взаимного ориентирования в общем виде, куда кроме координат соответственных точек, измеренных на стереопаре снимков, и элементов внутреннего ориентирования входят 8 параметров by, bz, w1’, a1’, À1’, w2’, a2’, À2’, которые определяют угловую ориентацию базиса фотографирования и стереопары снимков относительно системы координат модели ОМХМYMZM.
Причем параметры w1’ и w2’ определяют поворот снимков стерепары вокруг оси ХМ, параметры bz, a1’, a2‘ – поворот базиса фотографирования и стереопары снимков вокруг оси YM, а параметры by, À1’, À2 ‘– поворот базиса фотографирования и стереопары снимков вокруг оси ZM.
Однако, из этих 8 параметров только 5 определяют взаимную угловую ориентацию базиса фотографирования и стереопары снимков.
Условие (3) выполняется при любой ориентации системы координат модели ОМХМYMZM. Следовательно, ее можно ориентировать таким образом, чтобы 3 из 8 параметров стали равны нулю.
Очевидно, что в общем случае можно сделать равным нулю только один из параметров, входящих в три группы параметров:
– w1’, w2’;
– bz, a1’, a2‘;
– by, À1’, À2’.
–
Таким образом, в качестве элементов взаимного ориентирования можно выбрать любую комбинацию из восьми параметров by, bz, w1’, a1’, À1’, w2’, a2’, À2’, кроме комбинаций, в которые одновременно входят две тройки параметров bz, a1’, a2‘ и by, À1’, À2’, а также пара параметров w1’ и w2’.
Рассмотрим наиболее распространенные системы элементов взаимного ориентирования:
Система a1’, À1’, w2’, a2’, À2’. Если принять при этом, что by=bz= w1’=0, то уравнение (3) имеет вид:
. ( 4)Система by, bz, w2’, a2’, À2’. Если при этом принять, что w1’= a1’= À1’=0, то уравнение (3) будет иметь вид:
; ( 5)так как
.Комментарий. 3 оставшихся из 8 параметров после выбора 5 элементов взаимного ориентирования задают ориентацию системы координат модели ОМХМYMZM. Например, выбрав систему элементов взаимного ориентирования by, bz, w2’, a2’, À2’ и приняв, что w1’= a1’= À1’ =0, мы таким образом задаем систему координат модели ОМХМYMZM, которой параллельны осям x, y, z системы координат первого снимка стереопары S1x1y1z1. В общем случае значения трех параметров можно задавать произвольно.
5. Определение элементов взаимного ориентирования
Для определения элементов взаимного ориентирования в качестве исходного используют уравнения взаимного ориентирования ( 4.3)
.Каждая точка, измеренная на стереопаре снимков, позволяет составить одно уравнение (4.3), в которое, помимо измеренных координат точек на стереопаре снимков, элементов внутреннего ориентирования и трех параметров, задающих ориентацию системы координат модели, входят 5 неизвестных элементов взаимного ориентирования.
Очевидно, что для определения элементов взаимного ориентирования необходимо измерить на стереопаре снимков не менее 5 точек.
В качестве примера рассмотрим определение элементов взаимного ориентирования by, bz, w2’, a2’, À2’.
В связи с тем, что уравнения ( 4.3) не линейны, их предварительно приводят к линейному виду и переходят к уравнению поправок:
. ( 1)В уравнении поправок коэффициенты ai частные производные от функции ( 4.3) по соответствующим аргументам, а ℓ– свободный член.
Значения коэффициентов аi в уравнении ( 1) вычисляют по следующим известным значениям:
– измеренным координатам точек на стереопаре снимков – хi, yi;
– элементам внутреннего ориентирования снимков fi, x0i, y0i;
– 3 параметрам, задающим ориентацию системы координат модели (в нашем случае w1’, a1’, À1’) и приближенным значениям элементов взаимного ориентирования.
Свободный член ℓ вычисляется по формуле ( 4.3) таким же образом.
Полученную систему уравнений поправок решают методом приближений, а в случае, если измерено более 5 точек по методу наименьших квадратов (под условием VTPV=min). В результате решения находят значения элементов взаимного ориентирования.
Критерием, по которому принимается решение о завершении итерраций, могут являться величины поправок к определяемым неизвестным или величины остаточных поперечных параллаксов, которые для каждой измеренной точки вычисляются по формулам:
; ( 2)где
.Величина qост представляет собой разность ординат измеренных точек на стереопаре снимков, приведенных к идеальному случаю съемки, то есть q=y1-y2.
Необходимо отметить, что при отсутствии ошибок построения снимка и ошибок измерений величина q должна быть равна 0.
При определении элементов взаимного ориентирования оптимальным вариантом считается измерение 12-18 точек на стереопаре снимков, расположенных парами или тройками в 6 стандартных зонах (рис. 1).
- главная точка снимка
- стандартно расположенная зонаВ этом случае получается наиболее точное и надежное определение элементов взаимного ориентирования и появляется возможность локализации грубых измерений.
6. Построение фотограмметрической модели
Построение фотограмметрической модели заключается в определении координат точек объекта по измеренным на стереопаре снимков координатам их изображений в системе координат модели ОМХМYMZM.
Определение координат точек модели производится по формулам прямой фотограмметрической засечки (см. раздел 1).
При этом координаты центра проекции S принимаются произвольными (обычно 0). Также произвольно (но не равной 0) выбирается величина ВХ. В большинстве случаев практики величину ВХ принимают равной:
;где b – базис фотографирования в масштабе снимка,
m – знаменатель масштаба снимка.
Остальные значения элементов внешнего ориентирования определяют по 8 параметрам by, bz, w1’, a1’, À1’, w2’, a2’, À2’, 5 из которых являются элементами взаимного ориентирования, а 3 определяют ориентацию системы координат модели.
При этом
.Например, если были определены элементы взаимного ориентирования a1’, À1’, w2’, a2’, À2’ и при этом величины параметров by, bz, w1’ были приняты равными нулю (by=bz=w1’=0), то BY=BZ=0, w1=0, a1=a1’, À1=À1’, w2=w2’, a2=a2’, À2=À2’.