Смекни!
smekni.com

Разработка методов и средств поверки и калибровки геодезических приборов для измерения превышений (стр. 4 из 4)

В табл. 2 показаны результаты исследования цифрового нивелира DiNi12 и 3 метровой инварной штрих кодовой рейки.

Из результатов исследований следует, что инструментальная погрешность измерения метровых интервалов при помощи системы "цифровой нивелир DiNi12 – инварная 3-х метровая штрих-кодовая рейка" не превышает 0,06 мм.

Таблица 2

Метровые интервалы

Номинальная длина метровых интервалов рейки полученная на УМК-М Длина метровых интервалов измеренных цифровым нивелиром DiNi12 Погрешности измерения метровых интервалов цифровым нивелиром DiNi12 с учетом поправок за компарирование рейки на УМК-М
ход прямо ход обратно среднее
мм мм мм мм мм
1 +0,009 +0,01 -0,01 +0,000 -0,009
2 +0,007 +0,01 +0,02 +0,015 +0,008
3 +0,003 +0,01 -0,01 +0,000 -0,003
4 -0,012 +0,02 +0,00 +0,010 +0,022
5 -0,005 -0,01 -0,02 -0,015 -0,010
6 -0,021 -0,01 +0,00 -0,005 +0,016
7 -0,008 +0,02 +0,02 +0,020 +0,028
8 -0,007 +0,01 -0,01 +0,000 +0,007

Погрешность метровых интервалов инварной 3-х метровой штрих-кодовой рейки не превышает 0,02 мм. Инструментальная погрешность самого цифрового нивелира DiNi12 при измерении метровых интервалов не превышает 0,04мм.

Исследование системы "нивелир – рейка" с использованием концевых мер длины. Для проведения эксперимента было выбрано три высокоточных нивелира: оптический Н-05 и два цифровых DiNi10 и Dini12, а также рейки: инварная для оптического нивелира, инварная и четыре деревянных рейки для цифровых нивелиров. Все три прибора были установлены на штативы на одинаковом расстоянии от нивелируемых точек и на приблизительно одной высоте. Три точки установки реек представляли собой неподвижные горизонтальные площадки (предметный столик). Расстояния от нивелиров до трех точек нивелирования составляли: 3,5 м; 13,7 м; 29,0 м соответственно. Для изменения высоты точки использовались концевые меры длины (КМД), погрешность размера которых не превышала 0,4 мкм (при температуре 200С). Размер КМД составлял от 0,5 мм до 200 мм.

На нивелируемую точку по очереди устанавливались рейки и снимались отсчеты. Затем на точку устанавливали концевую меру размера 0,5мм и снова поочередно ставили рейки и снимали отсчеты. Изменение высоты при помощи концевых мер проводилось от нуля (пустая площадка), до 200 мм. Шаг изменения высоты: от 0 до 10 мм составлял 0,5 мм; от 10 до 100 мм составлял 10мм; от 100 до 200 мм составлял 20мм; между мерой в 1 мм и 1,5 мм устанавливалась мера в 1,2 мм. Такая методика была использована на каждой из трех нивелируемых точек. Реализованная методика представляет собой нивелирование из середины.

В результате исследования получено, что отклонения в превышениях, определенных нивелиром Н-05 по инварной рейке с 5-ти миллиметровыми делениями, составили порядка 0,2мм. Отклонения в превышениях, определенных нивелиром DiNi 10 по инварной штрих-кодовой рейке, не превышают 0,1мм. Отклонения, определенные нивелиром DiNi 12 по инварной штрих-кодовой рейке, не превышают 0,05 мм. Можно сделать вывод, что нивелир DiNi 12 является более точным.

Методика проведения эксперимента в полевых условиях почти не отличается от методики в лаборатории. Разница лишь в том, что было добавлено расстояние 50м и подобрано максимальное расстояние 86,5м, на котором нивелиры DiNi 10 и DiNi 12 могли отсчитывать по рейке.

Из проведенных исследований вытекают следующие выводы. С ростом расстояния от нивелира до рейки растет и погрешность определения превышения. Максимальная погрешность измерения превышений нивелиром DiNi10 на 3,5м составила 0,2мм, на 13,5м – 0,2мм, на 29,0м – 0,5мм, на 50м – 0,6мм и на 86,5м погрешность достигла 1,2мм. Максимальная погрешность измерения превышений нивелиром DNi12 на 3,5м составила 0,15мм, на 13,5м – 0,25мм, на 29,0м – 0,35мм, на 50м – 0,55мм и на 86,5м погрешность достигла 1,2мм.

Проведенные исследования метода калибровки систем "нивелир – рейка" с помощью концевых мер длины продемонстрировали возможность выявления инструментальной погрешности. В результате исследований выявлены инструментальные погрешности, которые в дальнейшем могут быть учтены при разработке методик и инструкций по нивелированию различных классов.

Результаты поверки и калибровки системы лазерного трекера для измерения превышений. Лазерный трекер (рис.11) является высокоточным средством измерения и, в соответствии с законом о единстве измерений, требует проведения метрологической поверки или калибровки.

Исследование проводилось в соответствии с разработанной в главе 2 методикой. Для исследования был предоставлен лазерный трекер фирмы "FARO". Заявленная фирмой погрешность измерения вертикальной координаты "Z" или превышения составляет 18мкм + 3ppm .

Рис. 11. Лазерный трекер "FARO".

Рис. 12. График погрешностей измерения превышений лазерным трекером.

При такой заявленной погрешности в качестве эталонного средств был выбран растровый измерительный преобразователь с погрешностью 3мкм, а в качестве альтернативного – лазерный интерферометр с погрешностью 1мкм+1ppm. Для исследования погрешности измерения превышения в диапазоне от -450до+450 работа проводилась при двух установках лазерного трекера. Трекер был установлен на расстоянии 200мм от отражателя. Данные условия вызваны тем, что длина растровой меры измерительного преобразователя составляла 200мм.

По результатам исследований был построен калибровочный график (рис. 12) погрешностей измерения превышений лазерным трекером. В результаты поверки были внесены поправки за систе-матическую погрешность хода подвижной каретки. Эти исследования показали, что инструментальная погрешность измерения превышения лазерным трекером не превышает 30 мкм, однако при изменении горизонта инструмента происходит "скачок", это может свидетельствовать о наличие неучтенной погрешности.

ВЫВОДЫ

1. Разработаны методы поверки и калибровки геодезических приборов для измерения вертикальных углов и превышений, позволяющие повысить точность измерений. И использование прецизионных линейных преобразователей и лазерных интерферометров позволяет экспериментально исследовать наличие короткопериодической погрешности поверяемого средства измерения.

2. Разработанные методы и средства поверки и калибровки геодезических приборов позволяют:

- исследовать короткопериодическую погрешность измерения вертикального угла геодезических приборов – теодолитов, тахеометров;

- исследовать инструментальную погрешность системы "нивелир – рейка" при помощи растрового измерительного преобразователя;

- исследовать инструментальную погрешность системы "нивелир – рейка" на компараторе;

- исследовать инструментальную погрешность системы "нивелир – рейка" с использованием концевых мер длины;

- провести калибровку координатных систем типа лазерный трекер.

3. На основе разработанных методов и средств поверки и калибровки геодезических приборов для измерения превышений или вертикальных углов разработаны специальные стенды, входящие в состав "Универсального метрологического комплекса МИИГАиК" (УМК-М).

4. На разработанных стендах проведены соответствующие исследования геодезических приборов, которые показали работоспособность, надежность и достаточную точность "Универсального метрологического комплекса МИИГАиК" (УМК-М).

5. По результатам исследований на методику измерений университетом подана заявка на изобретение и получено положительное решение. Получен официальный документ – "Сертификат эталонного средства измерения", что позволит проводить поверки и калибровку геодезических приборов – нивелиров, теодолитов, тахеометров, а также средств измерений в машиностроении, находящихся в эксплуатации в государственных и коммерческих предприятиях, организациях и фирмах.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ

1. Голыгин Н.Х. Степочкин А.А. Травкин С.В. Бахарев Е.С.Исследование оптико-электронных геодезических приборов и устройств для аттестации //Изв. вузов. Геодезия и аэрофотосъемка. – 2005. - №5. – С. 123 – 135.

2. Голыгин Н.Х., Травкин С. В., Стенд для аттестации вертикальных угловых измерительных систем геодезических приборов. // Изв. вузов. Геодезия и аэрофотосъемка. – 2006. - №2. – с. 128 – 131.

3. Травкин С. В. Метод определения погрешности измерения превышения высокоточными нивелирами с использованием концевых мер длины //Изв. вузов. Геодезия и аэрофотосъемка.–2006–№3–С.97–100.

4. Бахарев Е.С., Голыгин Н.Х., Травкин С.В., Хиноева О.Б., Ямбаев Х.К. Измерительный комплекс для аттестации угловых и линейных измерительных систем УМК-М//Приборы, 2006,-№5(71). –С. 50-54.

5. Хиноева О.Б., Жданова Е.С., Целикова А.А., Травкин С.В., Исследование угловых измерительных систем геодезических приборов – Сб. научных докладов научно-практической конференции "Научно-техническое творчество молодежи – путь к обществу, основанному на знаниях". Москва, 2006, – С. 246-248.

6. Клименок И.В., Быков К.И., Ласунова Е.А., Травкин С.В., Исследование цифровых нивелиров на компараторе УМК-М – Сб. научных докладов научно- практической конференции "Научно-техническое творчество молодежи – путь к обществу, основанному на знаниях". Москва, 2006, – С. 242-244.

7. Травкин С.В., Ямбаев Х.К., Голыгин Н.Х., Степочкин А.А., Стенд для поверки и калибровки нивелиров и реек, заявка о выдаче патента Российской Федерации на изобретение М кл. G01 с 7/00, № 031539, 10.08.2006.