Смекни!
smekni.com

Разработка методов анализа деформаций подземных сооружений (стр. 4 из 5)

где

. (18)

Следовательно,

при α > βi,(19)

при α < βi. (20)

Запишем уравнение (10) через измеренные значения и поправки к ним:

(21)

Разложим уравнение (21) в ряд Тейлора и, полагая, что искомые поправки достаточно малы, ограничиваясь первыми членами разложения, с учетом (19) и (20) при α > βiполучим:

(22)

а при α < βi:

(23)

Введем обозначения: при α > βi:

при α < βi:

остальные коэффициенты остаются без изменений.

С учетом принятых обозначений условные уравнения примут вид:

. (24)
Таблица 1
№ п/п βi Si, см φi
1 0º00'00" 188,5 159º56'38"
2 30º00'00" 209,7 129º56'38"
3 60º00'00" 234,7 99º56'38"
4 90º00'00" 266,0 69º56'38"
5 120º00'00" 302,8 39º56'38"
6 150º00'00" 323,8 90º56'38"
7 180º00'00" 318,0 20º03'22"

Измеренные значения углов βiи расстояний от дальномера до стенок тоннеля Si, представлены в табл.1.

Зная проектное значение радиуса тоннеля R = 255 см, высоту пола h1 и высоту инструмента h2, можно вычислить приближенное значение величины

:
.

В нашем случае h1 + h2 = 232 см, следовательно,

= 23 см. В соответствии с ранее принятым расположением осей координат, величину
вычислим по горизонтальным расстояниям S1 и S7:

. (25)

Из табл.1 находим, что S1=188,5 см, S7=318,0 см, следовательно,

=64,8 см.

По приближенным координатам оси инструмента вычисляется угол

:

и углы
.

Затем вычисляются коэффициенты аij. по приведенному выше алгоритму.

Известно, что деформации колец тоннеля – величины сравнительно малые, и в первом приближении примем

со средней квадратической ошибкой 3 – 4 см. На примере расчета далее показано, что такой подход позволяет вычислить необходимые деформационные характеристики, однако у него имеются и некоторые недостатки. При уравнивании результатов измерений подобных схем измерений под условием (8), поправки к приближенным отклонениям фактического положения стенок тоннеля от окружности, по сути, являются собственно отклонениями, так как принято, что
. Далее рассмотрен иной подход к обработке результатов измерений.

По приближенным координатам оси инструмента вычислим угол

:
и углы
, которые отражены в табл.1 (φi).

Найдем невязки li по формуле:

и затем представим их в виде матрицы L.

Составим матрицу обратных весов, используя средние квадратические ошибки,

, где элементами симметричной диагональной матрицы М размером 24×24 являются следующие средние квадратические ошибки: mx,y = 3 см, mΔ= 3 см, mS= 0,3 см, mβ = 20", mR = 3 см.

Вектор коррелат рассчитывается по формуле:

.

Вектор поправок найдем по формуле:

.

Известно, что деформации колец тоннеля – величины сравнительно малые, и в первом приближении примем Δi = 0 со средней квадратической ошибкой 3 – 4 мм. Получив поправки V, можно найти фактическое положение стенок и радиуса тоннеля, по формулам (15). В итоге получен вектор поправок Vi (поправки в линейные величины выражены в сантиметрах, а в угловые – в секундах). После определения поправок в измеренные величины, найдено фактическое положение стенок и радиус тоннеля по формуле (15). (Численные значения в автореферате не приводятся).

Выполненный анализ точности результатов уравнивания показал, что величины деформаций колец тоннеля получены со средней квадратической ошибкой 3 мм, а координаты реального положения оси тоннеля – со средней квадратической ошибкой 1,9 мм, как и величина вероятнейшего радиуса.

Далее в диссертации разработан второй метод определения деформаций стенок тоннеля с одновременным вычислением вероятнейшей окружности. В данном методе рассмотрены результаты измерений полярных координат (углов и расстояний) с одной стоянки электронного тахеометра. В данном случае целесообразно представить функцию (10) в следующем виде:

. (26)

Равенство (26) будет удовлетворено лишь в случае, если все величины будут уравнены.

Измеренные величины представим в виде:

где волнистой чертой сверху отмечены измеренные, либо приближенно известные величины.

Величины деформаций в первом приближении известны

, как величины малые, следовательно, поправки к ним будут собственно смещениями наблюдаемых точек от вероятнейшей кривой:
.

Представим величины, характеризующие положение вероятнейшей окружности, в виде

где величины
являются дополнительными неизвестными. В таком случае уравнение (26) имеет вид:

(27)

Полагая, что поправки к измеренным величинам и дополнительным неизвестным – величины малые, воспользуемся разложением в ряд Тейлора и приведем нелинейное уравнение (27) к линейному виду и введем обозначения:

(28)

где

;
.

Введем обозначения:

С учетом принятых обозначений уравнение (28) представим в виде условных уравнений

,(29)

где невязки

.

С учетом (19) и (20) уравнение (29) можно представить в виде:

,(30)

где при

:

а при

:

Используя условные уравнения (30), составим первую целевую функцию метода наименьших квадратов:

. (31)

После дифференцирования из полученных производных сформируем уравнения поправок:

. (32)

С учетом поправок, выраженных через коррелаты (32), условные уравнения (30) предстанут в виде:

. (33)

Для определения параметров вероятнейшей окружности из уравнения (33) сформируем вторую целевую функцию, преобразовав величину свободного члена li:

,(34)

где

,

откуда определим, при каких значениях

и
функция (34) будет иметь минимум