Смекни!
smekni.com

Финансовые расчеты (стр. 23 из 24)

Для опциона купли европейского стиля на акции без выплаты дивидендов Блэк и Сколес получили формулы для коэффициентов

и
для минимального хеджа:
(8)
(9)

Формулы получены исходя из предположения, что в любой момент времени t стоимость портфеля Xt совпадает со справедливой стоимостью опциона на текущий момент времени при известной текущей стоимости базисной акции St. Для опциона купли американского стиля стоимость минимального хеджирующего портфеля в любой момент времени может быть определена как условное математическое ожидание

(10)

а для опциона продажи как

(11)

Расчет коэффициентов чувствительности премии к изменениям параметров

На рынке наблюдаются постоянные изменения цены базисного актива опциона. В результате соответственно изменяется стоимость опциона. Коэффициент "дельта" представляет собой отношение изменения стоимости опциона, вызванное изменением цены базисного актива, к изменению цены актива:

Коэффициент

показывает, в какой мере изменится стоимость опциона при изменении цены базисного актива на один пункт. Теоретически, но не на практике, стоимость опциона не может увеличиться или уменьшиться в большей степени, чем стоимость актива, лежащего в основе контракта. Это значит, что должны выполняться неравенства 0
1 для опциона купли и -1
0 для опциона продажи. То, что для опциона продажи коэффициент
имеет отрицательное значение означает, что стоимость опциона изменяется в противоположном направлении относительно цены базисного актива. Опциону продажи с
-1 соответствует большой выигрыш, а с
0 большой проигрыш. Сравнивая
и коэффициент хеджа
, видим, что
=
. Кроме коэффициента
с премией опциона связаны такие коэффициенты, как
,
,
и
.

Заметим, что знание справедливой стоимости опциона имеет малое значение при спекулятивных операциях с опционами. Однако при формировании хеджирующих или арбитражных стратегий с различными опционами модели ценообразования опционов становятся более полезными, так как позволяют сравнивать опционы между собой по стоимости.

Оценка неизвестных параметров математической модели цены

Исторической волатильностью называется оценка волатильности по результатам наблюдений за ценой финансового инструмента на некотором прошедшем периоде времени. А подразумеваемая волатильность - это волатильность цены базисного актива, соответствующая рыночной стоимости опциона за вычетом внутренней стоимости в рамках используемой теоретической модели расчета стоимости опциона. Подразумеваемая волатильность не связана с текущей ценой базисного актива. Сравнивая историческую и подразумеваемую волатильность, биржевые торговцы делают вывод о завышенной или заниженной рыночной стоимости опциона, что позволяет сравнивать различные опционы между собой.

Задание прогнозируемой волатильности, используемой при расчете справедливой стоимости опциона, считается высшим искусством в ценообразовании опционов, хотя это всего лишь один из элементов процедуры задания гипотетической рыночной ситуации. Основой для задания прогнозируемой волатильности все же служит оценка исторической волатильности цены базисного актива. Для СДУ (1) оценка максимального правдоподобия исторической волатильности по данным дискретных наблюдений за стоимостью или значением базисного актива хорошо известна:

(12)

где

{tn} - неравномерная сетка по времени на интервале наблюдения [0,Tdata], Ndata - количество дискретных наблюдений {Sn} на этом интервале, hn = tn+1 - tn - интервал времени между наблюдениями Sn+1 и Sn. Оценку параметра

также несложно получить:
(13)

При оценке исторической волатильности обычно используют несколько различных периодов наблюдения [0,Tdata], так как замечено, что оценка

в модели Блэка-Сколеса сильно зависит от объема используемых данных Ndata, т.е. от числа дней торговли, учитываемых при оценке. Оценка
разная для данных о цене базисного актива за последний месяц, за последний квартал, за последние полгода и т.д. Чем больший период наблюдения [0,Tdata] используется при оценке, тем более осредненная оценка исторической волатильности получается.

Расчет премии подписчика опциона методом Монте-Карло

Метод Монте-Карло, в отличие от аналитического "мартингального" метода, позволяет при расчете премии опциона использовать в качестве математической модели цены базисного актива любую линейную или нелинейную систему СДУ, а не только скалярное линейное СДУ с мультипликативным шумом с постоянными коэффициентами роста и волатильности, любую нестандартную функцию выплаты, любую формулу оценки премии и любую, не обязательно хеджирующую, стратегию формирования портфеля подписчиком опциона. Все ниже перечисленные вычисления, связанные с опционами европейского и американского стиля, могут быть осуществлены методом Монте-Карло:

  • расчет премии опциона для заданных параметров опциона;
  • определение зависимости премии опциона от изменения параметров опциона;
  • определение зависимости премии опциона от используемой математической модели цены или значения базисного актива;
  • моделирование хеджирующей стратегии и расчет коэффициента хеджа;
  • расчет коэффициентов чувствительности
    ,
    ,
    ,
    и
    для заданных параметров опциона;
  • моделирование динамики премии опциона при случайных флуктуациях цены базисного актива и безрисковой процентной ставки.

На рис.1 приведены графики зависимости премий стандартных опционов купли и продажи европейского стиля на акции с выплатой дивидендов от оставшегося времени до истечения контракта T, а на рис.2 - от цены исполнения K. Выплата дивидендов в модели учитывается посредством непрерывной процентной ставки q=10%.