Смекни!
smekni.com

Основные понятия глобальной тектоники (стр. 4 из 5)

Горячие точки

На дне океанов расположены многочисленные вулканические острова. Некоторые из них расположены в цепочках с последовательно изменяющимся возрастом. Классическим примером такой подводной гряды стал Гавайский подводный хребет. Он поднимается над поверхностью океана в виде Гавайских островов, от которых на северо-запад идёт цепочка подводных гор с непрерывно увеличивающимся возрастом, некоторые из которых, напр., атолл Мидуэй, выходят на поверхность. На расстоянии порядка 3000 км от Гавайев цепь немного поворачивает на север, и называется уже Императорским хребтом. Он прерывается в глубоководном желобе перед Алеутской островной дугой.

Для объяснения этой удивительной структуры было сделано предположение, что под Гавайскими островами находится горячая точка — место, где к поверхности поднимается горячий мантийный поток, который проплавляет двигающуюся над ним океаническую кору. Таких точек сейчас на Земле установлено множество. Мантийный поток, который их вызывает, был назван плюмом. В некоторых случаях предполагается исключительно глубокое происхождение вещества плюмов, вплоть до границы ядро — мантия.

Траппы и океанические плато

Кроме долговременных горячих точек, внутри плит иногда происходят грандиозные излияния расплавов, которые на континентах формируют траппы, а в океанах океанические плато. Особенность этого типа магматизма в том, что он происходит за короткое в геологическом смысле время порядка нескольких миллионов лет, но захватывает огромные площади (десятки тысяч км?) и изливается колоссальный объём базальтов, сравнимый с их количеством, кристаллизующимся в срединно-океанических хребтах.

Известны сибирские траппы на Восточно-Сибирской платформе, траппы плоскогорья Декан на Индостанском континенте и многие другие. Причиной образования траппов также считаются горячие мантийные потоки, но в отличие от горячих точек они действуют кратковременно, и разница между ними не совсем ясна.

Горячие точки и траппы дали основания для создания так называемой плюмовой геотектоники, которая утверждает, что значительную роль в геодинамических процессах играет не только регулярная конвекция, но и плюмы. Плюмовая тектоника не противоречит тектонике плит, а дополняет её.


4 Тектоника плит как система наук

4.1 Карта тектонических плит

Сейчас тектонику уже нельзя рассматривать как чисто геологическую концепцию. Она играет ключевую роль во всех науках о Земле, в ней выделилось несколько методических подходов с разными базовыми понятиями и принципами.

С точки зрения кинематического подхода, движения плит можно описать геометрическими законами перемещения фигур на сфере.

Земля рассматривается как мозаика плит разного размера, перемещающихся относительно друг друга и самой планеты.

Палеомагнитные данные позволяют восстановить положение магнитного полюса относительно каждой плиты на разные моменты времени.

Обобщение данных по разным плитам привело к реконструкции всей последовательности относительных перемещений плит. Объединения этих данных с информацией, полученной из неподвижных горячих точек, сделало возможным определить абсолютные перемещения плит и историю движения магнитных полюсов Земли.

Теплофизический подход рассматривает Землю как тепловую машину , в которой тепловая энергия частично превращается в механическую. В рамках этого подхода движение вещества во внутренних слоях Земли моделируется как поток вязкой жидкости, описываемый уравнениями Навье — Стокса. Мантийная конвекция сопровождается фазовыми переходами и химическими реакциями, которые играют определяющую роль в структуре мантийных течений. Основываясь на данных геофизического зондирования, результатах теплофизических экспериментов и аналитических и численных расчётах, учёные пытаются детализировать структуру мантийной конвекции, найти скорости потоков и другие важные характеристики глубинных процессов. Особенно важны эти данные для понимания строения самых глубоких частей Земли — нижней мантии и ядра, которые недоступны для непосредственного изучения, но, несомненно, оказывают огромное влияние на процессы, идущие на поверхности планеты.

Геохимический подход. Для геохимии тектоника плит важна как механизм непрерывного обмена веществом и энергией между различными оболочками Земли. Для каждой геодинамической обстановки характерны специфические ассоциации горных пород. В свою очередь, по этим характерным особенностям можно определить геодинамическую обстановку, в которой образовалась порода.

Исторический подход. В смысле истории планеты Земля, тектоника плит — это история соединяющихся и раскалывающихся континентов, рождения и угасания вулканических цепей, появления и закрытия океанов и морей. Сейчас для крупных блоков коры история перемещений установлена с большой детальностью и за значительный промежуток времени, но для небольших плит методические трудности много большие. Самые сложные геодинамические процессы происходят в зонах столкновения плит, где образуются горные цепи, сложенные множеством мелких разнородных блоков — террейнов. При изучении Скалистых гор зародилось особое направление геологических исследований — террейновый анализ, который вобрал в себя комплекс методов, по выделению террейнов и реконструкции их истории.

4.2 Тектоника плит на других планетах

В настоящее время нет подтверждений современной тектоники плит на других планетах Солнечной системы. Исследования магнитного поля Марса , проведённые в 1999 космической станцией Mars Global Surveyor указывают на возможность тектоники плит на Марсе в прошлом.

Некоторые процессы ледяной тектоники на Европе аналогичны процессам, происходящим на Земле. Первые блоки континентальной коры, кратоны, возникли на Земле в архее , тогда же начались их горизонтальные перемещения, но полный комплекс признаков действия механизма тектоники плит современного типа встречается только в позднем протерозое.

До этого мантия, возможно, имела иную структуру массопереноса, в которой большую роль играли не установившиеся конвективные потоки, а турбулентная конвекция и плюмы .

В прошлом поток тепла из недр планеты был больше, поэтому кора была тоньше, давление под более тонкой (в разы) корой было ниже (также в разы). А при существенно более низком давлении и чуть большей температуре вязкость мантийных конвекционных потоков непосредственно под корой была намного ниже нынешней. Поэтому в коре, плывущей на поверхности манийного потока, менее вязкого, чем сегодня, возникали лишь сравнительно небольшие упругие деформации. И механические напряжения, порождаемые в коре менее вязкими, чем сегодня, конвекционными потоками, были недостаточны для превышения предела прочности пород коры. Поэтому и не было такой тектонической активности, как в настоящее время.

4.3 Прошлые перемещения плит

Пангея(Рис. 4 «Приложение 2» )

Восстановление прошлых перемещений плит — один из основных предметов геологических исследований. С различной степенью детальности положение континентов и блоков, из которых они сформировались, реконструировано вплоть до архея.

Из анализа перемещений континентов было сделано эмпирическое наблюдение, что континенты каждые 400—600 млн. лет собираются в огромный материк, содержащий в себе почти всю континентальную кору — суперконтинент. Современные континенты образовались 200—150 млн. лет назад, в результате раскола суперконтинента Пангеи. Сейчас континенты находятся на этапе почти максимального разъединения. Атлантический океан расширяется, а Тихий океан закрывается. Индостан движется на север и сминает Евразийскую плиту, но, видимо, ресурс этого движения уже почти исчерпан, и в скором геологическом времени в Индийском океане возникнет новая зона субдукции, в которой океаническая кора Индийского океана будет поглощаться под Индийский континент.

4.4 Влияние перемещений плит на климат

Расположение больших континентальных массивов в приполярных областях способствует общему понижению температуры планеты, так как на континентах могут образовываться покровные оледенения. Чем шире развито оледенение, тем больше альбедо планеты и тем ниже среднегодовая температура.

Кроме того, взаимное расположение континентов определяет океаническую и атмосферную циркуляцию.

Однако простая и логичная схема: континенты в приполярных областях — оледенение, континенты в экваториальных областях — повышение температуры, оказывается неверной при сопоставлении с геологическими данными о прошлом Земли.

Четвертичное оледенение действительно произошло, когда в районе Южного полюса оказалась Антарктида, и в северном полушарии Евразия и Северная Америка приблизились к Северному полюсу. С другой стороны, сильнейшее протерозойское оледенение, во время которого Земля оказалась почти полностью покрыта льдом, произошло тогда, когда большая часть континентальных массивов находилась в экваториальной области.

Кроме того, существенные изменения положения континентов происходят за время порядка десятков миллионов лет, в то время как, суммарная продолжительность ледниковых эпох составляет порядка нескольких миллионов лет, и во время одной ледниковой эпохи происходят циклические смены оледенений и межледниковых периодов. Все эти климатические изменения происходят быстро по сравнению со скоростями перемещения континентов, и поэтому движение плит не может быть их причиной.

Из вышесказанного следует, что перемещения плит не играют определяющей роли в климатических изменениях, но могут быть важным дополнительным фактором, «подталкивающим» их.

Заключение

Значение тектоники плит. Тектоника плит сыграла в науках о Земле роль, сравнимую с гелиоцентрической концепцией в астрономии, или открытием ДНК в генетике. До принятия теории тектоники плит, науки о Земле носили описательный характер. Они достигли высокого уровня совершенства в описании природных объектов, но редко могли объяснить причины процессов. В разных разделах геологии могли доминировать противоположные концепции. Тектоника плит связала различные науки о Земле, дала им предсказательную силу.