Выражения в правых частях формул (2.23)
q1=q1(α,β,p0)
=q( ). , (2.25)q2=q2(α,β,p0)2 = (
)2=q( , ( )2 (2.26)представляют собой соответственно безразмерные предельные безгазовые и безводные плотности расходов. С учетом (2.25) и (2.26) формулы (2.23) принимают вид
q01 = q1Δp1εh
q02 = q2Δp2εh . (2.27)
Для каждой пары значений а и В и соответствующих им значений ординат нейтральной линии тока (см.табл.2.1) по формулам (2.22) подсчитаны величины относительных вскрытий Ђ1,Ђ2 в зависимости от параметров а и В и значения параметров p01 и р02. Затем, с помощью таблицы (см.Прил.1) для предельных дебитов определялись q1(α,β,p0) и q2(α,β,p0), а затем по формулам (2.25), (2.26) рассчитывались плотности расходов q1 и q2. Результаты расчетов сведены в таблицу (Прил.З), которая охватывает все практически интересные значения параметров α, β, и р0[86]. В силу симметрии каждая строка таблицы дает одновременно значения безразмерных предельных плотностей расходов q1 и q2 для соответствующих значений α и β, т.е. qI,2(α,β)=q2,1(l-α,l-β). По данным таблицы нетрудно построить сетку кривых зависимостей q1,2=q1,2(p0) для фиксированных значений пары параметров а и В, т.е. для заданного интервала вскрытия (b-а), см.рис.2,7.
При конкретных расчетах предельных безводных и безгазовых дебитов поступают следующим образом. По известным параметрам а, 6 и р0 из таблицы или графиков находят плотности расходов qi и q2, затем по формулам (2.27) подсчитывают удельные расходы q01 и q02, из которых выбирают наименьшее значение q0=min{q01;q02}, и по формуле (2.24) подсчитывают искомый предельный дебит. Покажем применение метода на конкретных примерах.
Пример 2. Имеется подгазовая нефтяная залежь, подстилающаяся подошвенной водой. Исходные параметры: R0=200m; п=25м; Ар1=870кг/м3; Ар2=200кг/м3 (в пластовых условиях); ц„=2,5мПа
с; Кг=0,5 1,02 10-12м2; *=12. Требуется определить одновременно безводный и безгазовый дебит при безразмерных параметрах вскрытия: α=0,2; β=0,7 и α=0,2; β=0,5.1. Определяем значение
p0=R0/æ *h=0,66.
2. Из таблицы (см.Прил.З) находим плотности q1=0,145 и q2=0,290 при α=0,2 и β=0,7.
3. По формулам (2.27) находим удельные расходы:
q01=0,145-870εh=126,15εh;
q02=0,290-200εh=58εh;
4. Так как q02<q01, го выбираем q02. По формуле (2.24) определяем Q=19,4м3/сут.
5. Из таблицы (см.Прил.З) при α=0,2 и β =0,5 находим плотности q1=0,165 q2=l,0.
6. Удельные расходы составят соответственно:
q0l=0,165 -870εh=143,55εh;
q02=l,0-200εh=200εh;
7. В этом случае q01<q02.Выбираем q01. Тогда расход в пластовых условиях, подсчитанный по формуле (2.24), составит Q
29,2м3/сут.Как видим, в этом случае предельный дебит оказался в 1,5 раза больше предыдущего. Таким образом, наибольший предельный дебит зависит от положения интервала вскрытия.
Пример 3. Исходные параметры принимаются для примера 1, интервал вскрытия, в котором определяемый ординатами b=14,84м и а=2,34м, соответствует безразмерным ординатам:
β=b/h=14,84/25≈0,60
и
α=a/h=2,34/25≈0,l.
1.По таблице (см.Прил.З) для параметров α≈0,1,
0,60 и р0=200/25=8 при æ*=1 определяем плотности q1≈0,02 и q2≈0,19.2. По формулам (2.27) находим удельные расходы:
q01=0,02 -870εh=17,4εh;
q02=0,19-200εh=38εh.
3. Выбираем наименьшую плотность q01. По формуле (2.23) находим предельный дебит Q≈5,9м3/сут. Сравнивая его значение с дебитом Q=9,87м3/сут, рассчитанным по приближенной методике (см.пример 1), видим, что последний завышает в данном конкретном примере предельный дебит в 1,66 раза.
4. Для сравнения произведем расчет предельного дебита при тех же исходных данных по методике Курбанова-Садчикова, для чего пересчитаем параметры в обозначениях авторов [8]. Получаем:
γ=Δp1/Δp2=870/200= 4,35;
Ђ=hc/h= 12,5/25=0,5;
Ř=R0/æ*h=200/l -25=8.
По графикам [8] находим q≈0,47 и Ђr≈0,095 или hr≈0,095 -25≈2.38м. Предельный дебит по формуле [ 8 ] составляет
Q =
=1,75 10-4м3/c= 10,15м3/сут.Завышение предельного дебита по сравнению с расчетным, учитывающим нейтральную линию тока, в данном случае составляет 1,72 раза.
Пример 4. Принимаются исходные данные, для которых построены графические зависимости размерного предельного безводного и безгазового дебита, рассчитанные потенциометрическим методом [6,3] и приведенные на рис.8д [3]: R0=1000футов≈305м; h=100 футов≈30,5м; Δp1= 500кг/м3; Δр2=300кг/м3; Кг=1д=1мкм2; μн=1мПа -с и æ*=1.
Если принять интервал вскрытия 1=20 футов≈6,1м, то по графику рис.8д [3] точка пересечения кривых В и b дает Qnp=750 баре-лей/сут≈119м3/сут и местоположение интервала перфорации α≈30 футов≈9, 15м (см.рис.2.7). Следовательно,b=1+а=15,25м или в безразмерном виде α=0,3 и β=0,5. Параметр p0=R0/æ*h=10. Определим Qпр по уточненному методу. По таблице (см.Прил.З) находим плотности расходов q1(α,β,p0)= q1(0,3;0,5;10)≈0,18 и q2(α,β,p0)=q(0,3;0,5;10)≈0,45. Затем по формулам (2.27) определяем удельные расходы: q01=0,18
600εh=108εh и q02=0,45 •300εh=135εh. Для наименьшего удельного расхода q02 по формуле (2.24) находим Qпр≈109м3/сут. В данном случае расхождение между двумя методами несущественное и составляет 8,4%.Пример 5. За исходные примем данные в примере Курбанова-Садчикова [90]: R0=200m; h=10м; Δр1=700кг/м3; Δр2=300кг/м3; μн=2мПа
с; Кr=0,5 • 1,02 • 10-12 м2; æ*=5; b-а=2м; d=3,9м (см.рис.2.7).Из условия задачи имеем численные значения параметров α≈0,3; β≈0,5 и р0=4. По таблице (см.Прил.З) определяем безразмерные плотности расходов: q1≈0,213 и q2≈0,557. Удельные расходы составляют: q01 ≈0,149εh и q02≈0,167εh. Подсчитывая предельный дебит по формуле (2.24) по наименьшему удельному расходу q01, получаем Q≈6,1м3/сут.
По расчетам авторов [7,8] этот дебит равен Q
4,33м3/сут, т.е. отклонение составляет порядка 40%. Такое расхождение, очевидно, объясняется тем, что авторы при решении задачи делают допущение, что нейтральная линия тока проходит через середину интервала вскрытия (см.рис.2.6 и 2.7) при любом его положении, тогда как уточненная методика определяет положение нейтральной линии тока ξ* в зависимости от положения интервала вскрытия α и β. Заметим, что в своей предпосылке при решении задачи несовершенная скважина считалась линией стоков с постоянным удельным расходом. В действительности на скважине должен быть постоянным потенциал. Физически ясно, что картины линий тока будут отличаться несущественно, а, следовательно, положения горизонтальных линий тока будут близки друг к другу [3].Метод Курбанова-Садчикова и предлагаемый уточненный метод решения задачи конусообразования имеют следующие преимущества перед потенциометрическим и другими существующими методами: они универсальны, т.е. расчетные зависимости представлены в безразмерном виде и применимы как для однородных, так и для однородно-анизотропных пластов; графические решения даны в широком диапазоне безразмерных параметров вскрытия (α,β) и радиуса контура питания (R0) и охватывают все практически интересные случаи; технически удобны и просты, не требуют сложной вычислительной техники.
Заключение
Большинство нефтяных, газоконденсатнонефтяных, нефтегазовых и газовых залежей, разрабатываемых в настоящее время, подстилаются частично или полностью подошвенными водами или оконтуриваются краевыми водами или имеет место то и другое одновременно. Рациональная разработка указанных месторождений невозможна без знания особенностей и закономерностей продвижения границ раздела газ-вода, нефть-вода и газ-нефть к несовершенным скважинам. Как показывают промышленные испытания и анализы разработки залежей с верхним газом и подошвенной водой, конусообразование является, в ряде случаев, основной причиной обводнения или загазовывания нефтяных скважин, пробуренных в литологи-чески однородных пластах. Преждевременное обводнение или загазовыва-ние скважин, незнание закономерностей и причин этого явления ведет к потерям большой доли промышленных запасов нефти и, таким образом, снижению нефтеотдачи пласта, увеличению сроков разработки и в конечном итоге к большим материальным затратам на извлечение нефти из пласта. Отсюда тщательное изучение процессов продвижения подошвенных вод и верхнего газа, сложного явления деформации поверхности раздела фаз в пористой среде (конусообразования), особенностей и закономерностей обводнения пластов и скважин, совместного притока жидкостей к забою скважины и изучение природных факторов, способствующих увеличению безводного и безгазового периодов эксплуатации и улучшению технологических условий разработки залежей с целью наибольшего извлечения нефти из пласта, одна из основных задач увеличения нефтеотдачи на современном этапе.