Задание №2.
Определение дефектов обсадных колонн.
В процессе эксплуатации скважины обсадные трубы стареют, разъедаются коррозией, иногда наблюдаются их смятие, повреждение, порыв и потеря герметичности. Встречаются случаи негерметичности новых труб, особенно в местах муфтовых соединений. Негерметичность обсадных труб ликвидируется в процессе ремонтных работ для восстановления нормального функционирования эксплуатационной скважины. Поэтому непосредственно после перфорации и работ по цементированию контролируют техническое состояние эксплуатационной колонны с периодическим повтором этих работ в дальнейшем.
При изучении технического состояния и обнаружении дефектов обсадных стальных труб отбивают местоположение соединительных муфт, пакеров, центраторов и клапанов с помощью локатора муфт, измеряют толщины стальных труб, их внутренний диаметр, эллипсность поперечного сечения, устанавливают места повреждения труб с помощью толщиномеров, дефектомеров, профилемеров, визуально наблюдают и фотографируют состояние внутренней поверхности стенок труб и характер повреждения акустическим телевизором, исследуют места нарушения герметичности труб с помощью резистивиметра, термометра, испытателя пластов, изотопов, расходомеров, дебитомеров и других приборов. Для привязки по глубинам измерений в интервале исследования разными приборами применяются локаторы муфт.
Магнитный локатор муфт представляет собой индуктивную катушку, помещенную в корпус из немагнитного материала (бронза, нержавеющая сталь, титан) с ферромагнитным сердечником и двумя магнитными наконечниками, создающими в катушке и вокруг нее постоянное магнитное поле. При перемещении локатора в колонне стальных труб в местах муфтовых соединений, повреждений или перфорации из-за изменения магнитной проницаемости происходит перераспределение магнитного поля и возникает ЭДС в цепи катушки. Таким образом, муфтовые соединения или другие дефекты колонны отмечаются импульсами электрического тока, регистрируемыми на поверхности в функции глубины скважины. Магнитные локаторы двух модификаций используются в комплексе с приборами радиоактивного каротажа (ЛР) и перфоратора (ЛП) для привязки интервалов перфорации к пласту, а также в комплексе с другими скважинными приборами (акустический телевизор, калибромер и др.), применяемыми для исследования технического состояния эксплуатационной колонны.
При измерении гамма-толщиномером регистрируют интенсивность рассеянного γ-излучения. Измерительный прибор состоит из зонда малой длины (9-12 см), коллимационных окон и центраторов. Диаграмма изменения толщины труб в функции глубины называется тлщинограммой.
Места нарушения герметичности эксплуатационной колонны определяются обычно резистивиметром. Поэтому используется методика продавливания, заключающаяся в проведении серии повторных измерений удельного электрического сопротивления жидкости, заполняющей колонну, для прослеживания за перемещением порции жидкости, отличающейся по сопротивлению от предварительно закачанной.
Техническое состояние обсадных труб проверяется, как правило, до и после проведения подземного ремонта скважины.
Задание №3.
Опишите, как определяется пористость по данным гамма-гамма-метода.
При гамма-гамма-каротаже (ГГК) измеряют интенсивность рассеянных γ-квантов, генерируемых в окружающую среду источником γ-излучения.
Установка гамма-гамма-каротажа представляет собой индикатор γ-лучей, находящихся на некотором расстоянии от источника γ-излучения. Между индикатором и источником помещается экран-фильтр, защищающий индикатор от прямого γ-облучения. Расстояние между источником и индикатором, так же как и при нейтронных методах, называют длиной зонда. В зависимости от решаемой задачи применяют соответствующие модификации аппаратуры. Некоторые приборы центрируются илои прижимаются к стенке скважины. Наиболее перспективными являются двухзондовые приборы с коллимацией пучка γ-квантов. В качестве источника γ-излучений при ГГК обычно используют радиоактивный изотоп кобальта 27СО60 и цезия 55Cs134.
Ослабление энергии γ-квантов на интервале источник – среда – индикатор вызвано тремя основными процессами взаимодействия γ-квантов с атомами элементов, составляющих горные породы: комптоновского рассеивания, образования пар и фотоэлектрического эффекта.
Эффект Комптона заключается во взаимодействии γ-кванта с электроном, при котором часть энергии кванта передается последнему. Многократное комптоновское рассеяние приводит к последовательному снижению энергии γ-кванта. Вероятность рассеяния пропорциональна числу электронов в объеме породы (атомному номеру элемента Z или сумме составляющих породу элементов).
При фотоэлектрическом эффекте происходит поглощение γ-кванта атомом элемента. При этом вся энергия γ-кванта передается одному из электронов, вырываемому из электронной оболочки атома. В горной породе процесс данного типа поглощения пропорционален атомному номеру в шестой степени (Z6).
Образование пар наблюдается в результате взаимодействия с ядром γ-кванта, при этом последний превращается в пару электрон – позитрон. Образовавшийся позитрон через короткий промежуток времени соединяется со свободным электроном, в результате чего испускается два γ-кванта с энергией 0,51 МэВ, которые, в свою очередь, подвергаются комптоновскому рассеиванию или фотоэлектрическому поглощению. Образование пар пропорционально квадрату атомного номера (Z2) элементов, составляющих окружающую среду.
Гамма-кванты, вышедшие из источника, рассеиваются в породе в результате перечисленных выше процессов, часть из них достигает индикатора и отмечается им. Интенсивность рассеянного (регистрируемого) γ-излучения характеризуется объемной плотностью среды.
Эталонировка аппаратуры ГГК осуществляется в нескольких средах с известным значением плотности. Кривая логарифма отношений сигналов двух зондов ГГК характеризует эффективную плотность породы вблизи стенки скважины, т.е. суммарное значение плотностей зерен твердого скелета и заполняющего поры флюида. Связь объемной плотности породы δоб с ее пористостью knвыражается уравнением:
δоб = δм - kn·( δм – δф)
где: δм, δф – плотности скелета породы и заполняющего породу флюида (обычно фильтрата промывочной жидкости).
Из приведенной выше формулы пористоть определится:
kn = (δоб - δм)/( δм – δф)
Метод ГГК в комплексе с другими геофизическими методами успешно решает следующие задачи нефтепромысловой геологии: литологическое расчленение гидрохимических осадком, выделение коллекторов в карбонатных отложениях, выделение коллекторов в песчано-глинистых отложениях, определение пористости коллекторов. Радиоактивный каротаж, как правило, проводят в комплексе с электрическим и акустическим каротажом.
Библиографический список.
1. Середа Н.Г., Сахаров В.А., Тимашев А.Н. Спутник нефтяника и газовика: Справочник. - М.: Недра, 1986. – 325 с.
2. Минеев Б.П., Сидоров Н.А. Практическое руководство по испытанию скважин. М.: Недра, 1981. 280 с.
3. Шакиров А.Ф. Каротаж, испытание, перфорация и торпедирование скважин: Учебное пособие для профтехобразования. – 2-е изд., перераб. и доп. – М.: Недра, 1987. – 300 с.
4. Амиров А.Д., Карапетов К.А., Лемберанский Ф.Д. и др. Справочная книга по текущему и капитальному ремонту нефтяных и газовых скважин. М.: Недра, 1989. – 309 с.