NPV = (B-C)
(6)а за умов, що п - ∞, відповідно
NPV = (B-С)/ к (7)
Зауважимо, що в наведених рівняннях передбачається, що вигоди і витрати за інвестиційним проектом дисконтуються починаючи з 1-го часового періоду (року) його життя, тобто часовий період, в якому починається реалізація інвестиційного проекту, позначається як перший, і —І. Такий підхід є досить поширеним, зокрема саме він використовується в практиці роботи Світового банку. Одною з основних позитивних рис зазначеного підходу його прибічники вважають те, що він є більш зручним у використанні, оскільки часові періоди (роки) здійснення інвестиційного проекту і періоди дисконтування співпадають між собою Разом з тим, цілий ряд міжнародних і національних фінансових інституцій, компаній, консалтингових фірм використовує в своїй практиці підхід, згідно з яким вигоди і витрати за інвестиційним проектом дисконтуються починаючи а 2-го часового періоду (року) його життя, тобто часовий період (рік), в якому інвестиційний проект починається, позначається як нульовий — і = 0. При цьому виходять з того, що капіталовкладення за проектом мають місце "сьогодні", до того, як перший часовий період (рік) здійснення інвестиційного проекту має закінчитися.
Вигоди і витрати за інвестиційними проектами можуть приводитися до будь-якого часового періоду, важливо лише, щоб в умовах їх порівняння він був єдиний.
Якщо чиста приведена вартість певного інвестиційного проекту є величиною додатною, то це означає, що його реалізація має сприяти підвищенню суспільного або приватного добробуту. Відповідно, суспільство або приватний інвестор мають бути зацікавлені в його здійсненні. Коли чиста приведена вартість дорівнює 0, то це свідчить про те, що внаслідок реалізації інвестиційного проекту добробут його власників не зманюється. Вони, таким чином, залишаються байдужими до можливості реалізації такого інвестиційного проекту. І нарешті, якщо чиста приведена вартість інвестиційного проекту є від'ємною величиною, то в умовах його реалізації добробут власників має знизитися і від нього доцільно відмовитися.
Правила роботи з критерієм чистої приведеної вартості передбачають, що:
- не має прийматися до реалізації ні один інвестиційний проект, якщо він не забезпечує додатного значення чистої приведеної вартості;
- в межах фіксованого бюджету слід обирати такий "набір" інвестиційних проектів, який забезпечує максимальне значення чистої приведеної вартості;
- коли бюджетних обмежень не існує і інвестиційний проект обирається серед інвестиційних проектів, що є взаємовиключаючими, завжди слід обирати той з них, який забезпечує найбільше значення чистої приведеної вартості.
В умовах порівняння взаємовиключаючих інвестиційних проектів застосуванням критерію чистої приведеної вартості проектний аналітик стикається з проблемою коректного співставлення інвестиційних проектів, які мають різну протяжність у часі. Сутність цієї проблеми полягає в тому, що короткостроковий інвестиційний проект в більшості випадків не зможе конкурувати з довгостроковим за значеннями показників, які є вимірниками не відносної, як наприклад середня ставка доходу, а. так би мовити, абсолютної цінності інвестиційного проекту. Для розв’язання зазначеної проблеми розроблено і використовується ряд підходів.
Одним з найбільш поширених з них є, так званий, підхід ланцюгового заміщення або, як його ще називають, єдиної тривалості. Даний підхід передбачає порівняння за показником чистої приведеної вартості не безпосередньо інвестиційних проектів, протяжність яких суттєва різниться у часі, а інвестиційного проекту найбільшої протяжності з серією інвестиційних проектів меншої протяжності, які, як очікується, мають послідовно реалізовуватися на протязі строку, який дорівнює терміну життя інвестиційного проекту, що триває довше. При цьому мова йде не лише про суто технічний прийом, який має забезпечити коректність порівняння відмінних за терміном життя інвестиційних проектів. Підхід ланцюгового заміщення доцільно реалізовувати в умовах, коли передбачається, що інвестиційні проекти, тривалість яких є меншою, дійсно будуть повторюватися, принаймні існує досить висока ймовірність цього.
Зазначимо, що на практиці можуть порівнюватися не лише інвестиційні проекти більшої тривалості з серіями інвестиційних проектів меншої тривалості, а й певні сполучення зазначених інвестиційних проектів, що послідовно замащують один одного у часі. Проте формування послідовності таких сполучень не є прерогативою лише фінансового або економічного аналізу інвестиційних проектів. Воно безпосередньо пов'язується з питаннями щодо можливості реалізації певної послідовності інвестиційних проектів з технічної точки зору та перспектив продуктів (послуг), які вони пропонують, — з точки зору ринку, що, відповідно, знаходить відображення в технічному та маркетинговому аналізі.
Співвідношення між термінами життя інвестиційних проектів різної тривалості не завжди с кратним. Якщо термін життя одного інвестиційного проекту 4, а іншого — 6 років, то єдиний період, в якому вони мають порівнюватися, складає 24 роки, якщо інвестиційні проекти мають термін життя 10 і 15 років, то єдиний період — 30 років тощо, що ускладнює проведення відповідних розрахунків, а підхід ланцюгового заміщення за цих умов, в більшій мірі, набуває характеру суто технічного прийому. Для спрощення розв'язання задачі такого роду пропонується застосовувати підхід еквівалентної ренти, у відповідності до якого чиста приведена вартість за первісними інвестиційними проектами розглядається як поточна вартість ренти, яку очікують отримувати протягом терміну експлуатації інвестиційного проекту в кожному часовому періоді (році). Як наслідок, порівняння інвестиційних проектів здійснюється за величиною рентного платежу і перевага віддається тому варіанту, за яким його величина є більшою. Результати застосування підходів ланцюгового заміщення і еквівалентної ренти не суперечать між собою. Аналізуючи підходи ланцюгового заміщення і еквівалентної ренти необхідно відмітити деякі притаманні їм недоліки, які знижують цінність результатів, що отримані:
- в умовах інфляції можна очікувати, що як капіталовкладення за інвестиційними проектами заміщення, так і відповідні їм поточні вигоди і витрати з часом мають зазнати змін відносно первісних інвестиційних проектів;
- існує висока ступінь імовірності того, що розвиток нової техніки і технологій вплине на процеси реалізації і експлуатації інвестиційних проектів заміщення, що, відповідно, зумовить зміни в чистих вигодах, які вони забезпечують, у порівнянні з аналогічними Інвестиційними проектами, які були реалізовані раніше;
- досить складно точно оцінити термін життя серії інвестиційних проектів, відповідно не зумовлює необхідність прийняття певних, часом досить наближених, припущень;
- якщо інвестиційні проекти заміщення здійснюються на ефективних ринках, то з часом їх доходність має знижуватися і, як наслідок, чиста приведена вартість нових "аналогів" може не дише виявитися меншою, а й стати величиною від'ємною. Коли ймовірність значного зниження доходності оцінюється як висока, то інвестиційні проекти доцільно порівнювати за їх вихідним терміном життя.
Обмеженням, щодо застосування методу чистої приведеної вартості, виступає той факт, що даний метод в змозі забезпечити коректні результати лише за умов, коли можна отримати достовірні оцінки вартості капіталу.
Крім того, метод чистої приведеної вартості, визначаючи абсолютний результат реалізації інвестиційного проекту, водночас, не має можливості в повній мірі оцінити ефективність використання капіталовкладень за ним.
Очевидно, що інвестиційні проекти, які мають довший термін експлуатації або більший масштаб, як правило, характеризуються вищим значенням чистої приведеної вартості, проте не обов'язково мають забезпечувати більшу віддачу на одиницю капіталовкладень.
Внутрішня ставка доходу (IRR)
Внутрішня ставка доходу являє собою таке значення ставки дисконта, при якому сума приведених вигід дорівнює сумі приведених витрат, іншими словами, це ставка дисконта, при якій чиста приведена вартість інвестиційного проекту дорівнює нулю:
(8)де ІКК - внутрішня ставка доход.
Наочно тлумачення внутрішньої ставки доходу може бути проілюстровано через профіль чистої приведеної вартості, який показує взаємозв'язок між чистою приведеною вартістю і вартістю капіталу за інвестиційним проектом, що використовується для її визначення. Точка, в якій крива чистої приведеної вартості перетинає вісь абсцис, визначає значення внутрішньої ставки доходу.
Як видно з рівняння (8), яке являє собою поліном п -го ступеня, внутрішня ставка доходу може бути розрахована лише з застосуванням ітераційного підходу. Суттєво спростити проведення відповідних розрахунків дозволяє використання фінансових калькуляторів та комп’ютерів. За умов, коли вони недоступні, внутрішня ставка доходу може бути визначена через рівняння виду:
k1- ставка дисконта, при якій NPV = NPV1 (NPV1 > 0);
k2 - ставка дисконта, при якій NPV = NPV2 (NPV2 < 0)
Слід зауважити, що обчислення внутрішньої ставки доходу за даним методом дає погрішність, яка є тим більш суттєвою, чим далі від дійсної величини внутрішньої ставки доходу відстоять значення ставки дисконта, які забезпечують додатну та від'ємну чисту приведену вартість, k1 та k2 відповідно. Наявність такої погрішності зумовлена тим, що залежність між чистою приведеною вартістю і ставкою дисконта не носить лінійного характеру.