Золотая и медная минерализация: геохимические и физические процессы
В разделе рассмотрены геохимические механизмы золотомедного рудообразования (минерализация) из гидротермальных растворов и их соотношение с процессами, происходящими в гидротермальных системах. Описаны соотношения главных типов эпитермальных и порфировых золотых и меднорудных месторождений с разными типами гидротермальных систем, геологические факторы, которые контролируют образование и функционирование гидротермальных систем и, почему в каких-то случаях рудообразование не происходит.
Не все гидротермальные системы содержат промышленные золотые месторождения и не все части рудопроявления имеют одинаковые рудные минералы. Даже большое месторождение золота будет занимать только небольшую часть первичной гидротермальной системы. Цель раздела - определение главных химических и физических механизмов, контролирующих отложение золота, и применяя их, установить специфические факторы, ответственные за образование некоторых месторождений.
Для выполнения поставленных задач необходимо знать, каким образом золото переносится гидротермами при эпитермальных температурах. Обычные гидротермы в гидротермальных системах представляют собой разбавленный минеральный раствор (почти нейтральный, слабо кислый и, в основном, метеорного происхождения). Они содержат растворённые газы, преимущественно СО2> и в меньшем количестве Н28. В гидротермах этого типа в интервале эпитермальных температур золото переносится, главным образом, в виде бисульфидного комплекса. Оно может также мигрировать в виде хлоридных комплексов, но в типичных эпитермальных гидротермах этот процесс имеет малое значение. Этот способ более важен при температурах образования порфировых рудообразующих систем или в системах с высоко минерализованными гидротермами. Теллуридные комплексы важны при образовании некоторых месторождений, но химические свойства их аналогичны сульфидным комплексам. Золото, фактически, имеет нулевую растворимость в паре при эпитермальных температурах: таким образом, если пар или газ отделяются, то золото остаётся в жидкой фазе.
Бисульфидные комплексы золота плохо растворимы и, таким образом, концентрации золота в гидротермальных растворах низкие. Но гидротермальные системы имеют большие размеры и функционируют продолжительное время. Было подсчитано, что до 5 кг/год золота в настоящее время отлагается в гидротермальной системе Бродландс - Охааки в Новой Зеландии. Следовательно, месторождение с запасами 100 тонн могло бы образоваться в течение 20 000 лет. Некоторые системы могут действовать в десятки раз дольше. Sander, Einaudi (1990) пришли к выводу, что запасы золота в Раунд Монтейн в 500 тонн могли отложиться в течение 100 000 лет. Экспериментальные оценки (Seward, 1973) различных видов водных золотых комплексов показывают, что Au (HS) 2-, по-видимому, преобладает в гидротермах при почти нейтральных рН и малой минерализации. Это позволяет предполагать его участие при образовании эпитермальных месторождений лоу сульфидейшн (рис.1). Расчёт масс-балансов (Brown, 1986), после открытия золото содержащих осадков в геотермальных трубопроводах, согласовывались с экспериментальными данными. Места осаждения осадков при внезапном падении давления свидетельствуют, что золото осаждается в результате кипения. Компьютерное моделирование (Dummond, Ohmoto, 1985) также показало, что золото может отлагаться в результате кипения или смешения гидротерм с водами разного химического состава.
Имеется ряд бисульдных комплексов Аи, которые стабильны в различных химических режимах. Уравнение, описывающее отложение золота из раствора в виде бисульфидного комплекса, представлено так:
2Au (HS) - + H2 + 2H+ и 2Аи + 4H2S. Смещение уравнения вправо будет способствовать отложению золота. Ниже рассматриваются факторы, изменяющие этот процесс.
Первым фактором является рН раствора. Согласно уравнению, увеличение кислотности гидротерм будет вызывать отложение золота. В действительности этот вывод является очень упрощённым: в данных условиях золото может быть отложено также при увеличении рН (рис.1, 2,3). Важным моментом является то, что растворимость золота связана с рН, так как любой процесс, влияющий на рН, может потенциально вызвать отложение золота.
Вторым фактором, который может сместить выше упомянутое уравнение вправо, является удаление H2S. Наибольший эффект этот процесс даёт в фазу разделения, другими словами, если H2S отделяется в результате кипения. Однако изменение в бисульфидном равновесии, в результате образования других сульфидов, может быть также важным процессом: отсюда обычное нахождение золота в виде включений в сульфидах. Далее мы более подробно остановимся на этих процессах и их значении.
Третьим процессом, который не отражён в выше приведенном уравнении, является охлаждение: золотосульфидный комплекс имеет прогрессивную растворимость (в интервале эпитермальных температур), так что охлаждение гидротерм будет вызывать отложение этого комплекса.
Другим фактором, который оказывает влияние на отложение золота, является адсорбция другими минеральными фазами. Этот процесс может эффективно извлекать золото из раствора. Некоторые мышьяковистые и другие гели, которые образуются в горячих источниках, могут эффективно участвовать в этом процессе, как и некоторые супергенные окислы и гидроокислы.
Показав, какие условия могут быть причиной отложения золота, рассмотрим физические процессы, которые происходят в гидротермальной системе и предположительно оказывают воздействие на формирование таких условий. Возникая в некоторых местах гидротермальных систем, они приводят к концентрированным отложениям золота. Главные механизмы описываются в последовательности от менее важных к более важным с точки зрения формирования промышленных месторождений:
Кондуктивное охлаждение. Этот процесс будет вызывать отложение золота, но механизм концентрирования не очень эффективный, так как скорость теплопотерь медленная и, в связи с этим, отложение золота происходит на большой площади. Он может привести к рассеянию золота в результате отложения других минералов, таких как кремнезём.
Испарение. Этот процесс более эффективен в качестве концентратора золота в растворе в небольшом масштабе, но не очень эффективен при образовании больших зон концентрированного отложения, поскольку энергетические затраты высокие. Выброс гидротерм при 240°С при падении давления до атмосферного (т.е. до 100°С) будет вызывать повышение концентрации лишь на 1/5 часть, которая приходится на уменьшение объёма гидротерм в виде пара, что слишком незначительно (рис.4). Более продолжительное испарение на поверхности в горячих котлах (прудах) может привести к образованию кремнистых золотосодержащих отложений (гейзерит), но обычно они не имеют промышленного значения. В связи с этим увеличение объёма рудосодержащих минералов может уменьшить содержание золота.
Взаимодействие вода-порода. В большинстве гидротермальных систем гидротермальные растворы не всегда находятся в равновесии с вмещающими породами. В результате гидротермальных изменений наблюдается образование более низкотемпературных и гидратированных фаз, но без значительных изменений химического состава гидротерм при взаимодействии вода-порода. Важным исключением являются месторождения типа Карлин, которые образуются при взаимодействии гидротермальных растворов и карбонатных пород. Оказалось, что в этом случае часть карбонатного вещества помогает отложению золота. Другое исключение относится к системам хай сульфидейшн, где гидротермы имеют другой, более агрессивный состав. Но помимо этих примеров, взаимодействие вода-порода обычно не эффективно при формировании локальных концентрированных золоторудных образовании
Смешение гидротерм. Этот процесс имеет разнонаправленное влияние. Смешение высокотемпературных (горячих) гидротерм с холодными подземными водами будет как разбавлять концентрации золота (ослабляя процесс отложения золота), так и охлаждать горячие гидротермы (повышая вероятность золотого рудообразования). Эффект охлаждения доминирует, но не во всех случаях. Таким образом, этот процесс будет обусловливать частичное отложение золота, но степень концентрации его будет не высокой. Однако изменение рН или концентрирование бисульфидов, вследствие прямого смешения гидротерм или в результате соосаждения с другими минеральными фазами, приводит к концентрированию золота. Особенно важным является процесс, в результате которого вторичные гидротермальные растворы, которые могут иметь высокую кислотность (см. ниже), смешиваются с восходящими струями пара, поднимающимися от первичных субнейтральных гидротерм.
Кипение гидротерм. Этот процесс также разнонаправленный. Эффект концентрации в результате испарения и охлаждения гидротерм приводит к потере их энергии и ускорению отложения золота, хотя влияние этого процесса незначительное. Наибольшее влияние на этот процесс оказывает выделение газов из гидротерм. Удаление 1% воды в виде пара будет сопровождаться потерей гидротермами подавляющей доли растворенного газа (точное количество зависит от температуры и рН гидротерм) (рис.5).
Отделение H2S вызывает быстрое отложение золота, которое может быть усилено соосажденим других минералов, особенно сульфидов. Ситуация осложняется взаимосвязанными с этим процессом изменениями рН. Влияние дегазации CO2 и H2S сводится к тому, что гидротермы становятся более щелочными. Этот процесс препятствует отложению золота. Но в целом комбинация этих факторов означает, что отложению золота благоприятствует резко возникшее, обширное и продолжительное кипение. Этот процесс является главной причиной образования промышленных с высокими содержаниями золота эпитермальных месторождений.