Смекни!
smekni.com

Золотая и медная минерализация: геохимические и физические процессы (стр. 2 из 3)

3. Кипение и газоотделение

Для понимания флюидных процессов в гидротермальных системах, необходимо изучить происходящие там кипение и дегазацию (газоотделения). Для такого флюида, как вода, при любой конкретной температуре, имеется понятие теоретического давления пара. Это давление, которое будет существовать над свободной водной поверхностью в открытом сосуде. Если такое давление будет меньше, чем давление ограничивающей его жидкости в парообразной фазе, то жидкая фаза будет испаряться до тех пор, пока не будет достигнуто равновесное давление в обеих фазах. В ограниченной системе, в которой паровая фаза может удаляться (если уменьшается ограничительное давление до значений меньше, чем давление насыщенного пара) или увеличивается температура (в том случае, когда давление насыщенного пара больше, чем ограничительное давление), то жидкие гидротермы будут очень быстро (взрывоподобно) превращаться в пар, что определяется словом "флэш". Процесс будет продолжаться до тех пор, пока температура гидротерм упадет до соответствующего (достаточного) значения, при котором давление насыщенного пара будет меньше, чем ограничительное давление, или давление поднимется до значений давления насыщенного пара, или же приток гидротерм прекратится.

Аналогичная ситуация характерна для растворённых газов. Любой конкретной температуре гидротерм соответствует теоретическое давление насыщенных газов. Поскольку водяной пар также присутствует в этом процессе, то это давление называется парциальным давлением газа. Но необходимо помнить, что, за исключением случаев с очень высокими давлением или концентрацией, газы в сосудах действуют независимо. Общее давление представлено суммой парциальных давлений. Таким образом, газ, по существу, игнорирует давление водяного пара. Если ограничительное давление меньше, чем парциальное давление насыщенного газа, то газ будет выходить из раствора. Если парциальное давление газа превышает значения насыщения, то газ будет растворяться в жидкой фазе.

"Дегазация" и "кипение" - это физические аналоги. Они имеют одни и те же причины их протекания, т.е. они обусловлены превышением парциального давления над ограничительным давлением. Упрощенно это можно представить так: "кипение" условно относится к основной фазе (растворителю), а "дегазация" - к подчиненной (второстепенной) фазе ("раствор"). В смеси (растворе) они находятся совместно.

Эпитермальные месторождения, по определению, связаны только с до критическими гидротермами. Критические и над критические температуры (374°С для чистой воды) воды могут существовать лишь в виде единой фазы независимо от давления.

Умозрительно эта фаза обычно рассматривается в качестве пара, но при таких высоких температурах даже жидкая вода имеет свойства, отличные от свойств, характерных для воды в окружающих условиях. Жидкая вода при около критических температурах имеет довольно низкую плотность и особенно низкую вязкость по сравнению с водой, находящейся в окружающих нас условиях, и значительную (повышенную) способность в качестве растворителя. Таким образом, она мобильнее и "агрессивнее" нормальной, известной нам, вода.

В порфировых около магматических средах вода может быть в условиях над критического режима, но отмечается, что критическая точка резко поднимается при повышении концентрации раствора (Рис.6). Таким образом, высокоминерализованные гидротермы, связанные с порфирами, могут находиться в до критическом режиме и подвергаться "кипению" с разделением на две разные фазы при температурах на многие сотни градусов, превышающие критическую температуру воды.

4. Локализация мест кипения в гидротермальных системах

Кипение любого флюида может происходить при наличии 2-х условий: при уменьшении давления и притоке тепла. Необычным является дополнительный приток тепла в гидротермальную систему, кроме особого случая, связанного с внедрением дайки, которая может быть причиной образования значительной области кипения. Обычно кипение гидротерм в гидротермальной системе происходит в результате падения давления. Это может быть более или менее спокойный, устойчивый процесс, по мере того как восходящие флюиды достигают зоны, где ограничительное давление достаточно короткое время сохраняет их в жидком состоянии. В этом случае будет поддерживаться более или менее постоянный уровень глубины кипения, над которым располагается пародоминирующая зона и, вероятно, происходит эмиссия (истечение) пара из поверхностных фумарол. Крайний случай спокойного непрерывного кипения в гидротермальной системе это парение над горячим источником.

Однако золотые месторождения с наивысшими концентрациями золота образуются тогда, когда кипение гидротерм строго сосредоточено в ограниченном объёме гидротермальной системы и характеризуется энергичностью и растянутостью во времени. Плавный и тихий переход от однофазной к двухфазной зоне по мере уменьшения глубины, по-видимому, приводит, в лучшем случае, лишь к формированию рассеянных золоторудных отложений с низкими концентрациями. Для образования бонанзовых жильных месторождений необходимо, чтобы гидротермы подвергались резкому падению давлений, обусловливающему начало кипения на такой глубине, при которой вмещающие породы были бы достаточно нагретыми, чтобы гарантировать непрерывность кипения в течение значительного периода. Для объяснения падения давления в гидротермальной системе обычно рассматривается два разных механизма: тектоническое растяжение и гидротермальное дробление и брекчирование.

Большие промышленно значимые жилы образуются, если этот процесс регулярно повторяется. Он может быть вызван обоими механизмами. Повторные тектонические растяжения происходят регулярно, поскольку движения по разломам являются возобновляемым, периодическим процессом. Повторяющееся гидротермальное брекчирование может происходить в результате того, что гидротермальная система автоматически регулируется (рис.7).

Кремнезём более растворим при высоких температурах и различные его полиморфные разности имеют разную растворимость. Гидротермы, которые насыщены по отношению к кварцу на глубине, становятся пересыщенными и отлагают кремнезём, по мере того как они поднимаются вверх и остывают. В соответствии с законами кинетики отложения кремнезёма аморфный кремнезём является обычной фазой, контролируемой растворимостью на малых глубинах (рис.8).


Это приводит к изоляции кровли гидротермальных систем. Постоянный приток восходящих высокотемпературных гидротерм и накопление газов под окремнённой кровлей приводят к нагреву и повышению давления до тех пор, пока не произойдет разрушение этого образования. Накопление растворённых газов под временным верхним изолирующим слоем гидротермальных измененных пород, может способствовать дроблению. Оно может быть спровоцировано мелкими сейсмическими толчками, колебаниями земной поверхности, изменениями атмосферного давления или другими климатическими событиями или геоморфологическими процессами.

Отмечается, что энергетическая мощность тепловой разгрузки обычной гидротермальной системы может допускать очень частые гидротермальные взрывы. Через большую гидротермальную систему выделяется достаточное количество тепла, чтобы выбросить взрывом порядка 100000 м3 продуктов извержения в день.

При тектонических растяжениях или гидротермальном брекчировании гидротермы могут всасываться (вторгаться) в образованное открытое пространство. Если гидротермы достигают дневной поверхности, то возникают гидротермальные извержения. Питающие каналы в недрах гидротермальной системы возникают в зонах гидротермальных брекчий. Этот процесс может быть скрытым; не обязательно, чтобы гидротермы достигали дневной поверхности, только зоны с пониженным давлением являются исключением. Как только трещина открывается в сторону от зоны с высоким давлением, расположенной в недрах системы, в направлении зоны с пониженным давлением, расположенной выше по разрезу, может происходить вторжение в эту зону потока гидротерм. Этот процесс может продолжаться до тех пор, пока местный источник гидротерм не иссякнет, или породы на этом участке охладятся до такой степени, что содержащегося в них тепла будет не достаточно для поддержания процесса кипения, в связи, с чем их извержение прекратится. Тепло и давление могут вновь регенерироваться предположительно в течение сотен лет или около этого.

После таких временных нарушений гидротермальная система восстанавливает нормальную конвекцию гидротерм, в результате чего продолжается отложение кварца (рис.7). Регулярное повторение этих процессов приводит к образованию жил, заполненных ритмически полосчатым кварцем, которые характерны для эпитермальных месторождений и эти процессы ответственны за поликластическую и многостадийную природу брекчий.

Обычным недоразумением является мнение, что давление гидротерм в гидротермальной системе должно превышать литостатическое при гидротермальном брекчировании (Hedenquist, Henley, 1985; Nelson, Giles, 1985). Этот вывод неверен, поскольку для открытия трещины на глубине должно быть избыточным лишь небольшое общее напряжение плюс предел прочности пород на разрыв. Исключением из этого правила являются районы с необычными высокими тектоническими напряжениями в недрах системы, где горизонтальная компонента напряжения обычно меньше вертикальной составляющей, которая сопоставима с литостатическим давлением.