Смекни!
smekni.com

Гамма метод (стр. 1 из 3)

Вопрос № 1.

Гамма метод. Аппаратура, записываемые кривые, их интерпретация.

Во всех горных породах в небольших количествах присутствуют радиоактивные элементы. Содержание радиоактивных элементов в различных горных породах, а следовательно, и интенсивность испускаемых ими ядерных излучений различны. Поэтому, регистрируя их, можно судить о типе горных пород, пройденных скважиной. Метод исследования геологического разреза скважин, основанный на регистрации излучений, испускаемых естественно радиоактивными элементами горных пород, носит название метода естественной радиоактивности. Поскольку обычно альфа- и бета-лучи, имеющие малый пробег в веществе, полностью поглощаются буровым раствором и корпусом скважинного снаряда, а индикатора достигают лишь гамма-лучи, этот метод называют также гамма-методом и сокращенно обозначают ГМ.

При исследовании гамма-методом в скважину опускают прибор, который содержит детектор гамма-излучения и электронную схему (рис. 1), служащую для питания индикатора, усиления его сигналов и передачи их через кабель на поверхность. Часто используют многоканальные приборы, регистрирующие одновременно диаграммы гамма-метода и нейтронного гамма-метода. Точка записи ГМ совпадает с серединой детектора.

Рис. 1. Схема зондов радиометрии скважин.

/—детекторы гамма-излучения (Г), тепловых (Т) и надтепловы.х (Н) нейтронов; ис­точники: 2 — гамма-излучения; 3 — быстрых нейтронов; 4 — вещество, хорошо поглощающее гамма-кванты (РЬ, Ге и т. п.); 5 — водородсодержащее вещество. рассеивающее и поглощающее нейтроны (парафин, полиэтилен и т. п.); УТ — ускорительная трубка генератора нейтронов; ВБ — высоковольтный блок; ЭС — электронная схема прибора

Радиоактивность горных пород обусловлена в основном присутствием в них урана, тория, радиоактивных продуктов их распада и, наконец, калия, один из изотопов которого 40К также радиоактивен.

При разработке ряда нефтяных и газовых месторождений обнаружено резкое повышение радиоактивности некоторых продуктивных пластов при их обводнении, а возможно, и по другим причинам. Этот эффект, названный радиогеохимическим, широко используется при контроле разработки месторождений .

Если не считать урановых и ториевых руд, наибольшей гамма-активностью обладают кислые изверженные породы, например граниты, а также глины. По интенсивности гамма-излучения 1 г этих пород эквивалентен (4 – 6)·10 ˉ12 г 226Ra. Наименее активны (менее 10­ ˉ12 г Ra) ультраосновные породы, а среди осадочных пород – чистые разности известняков, песчаников, большинства каменных углей и особенно гидрохимических пород (кроме калийных солей). В осадочных породах, как правило, радиоактивность тем больше, чем выше содержание глинистой фракции. Это позволяет по кривым I,, различать мины, глинистые и чистые разности известняков, песчаников и т. п.

Повышенная радиоактивность глинистых горных пород объясняется тем, что благодаря большой удельной поверхности они в процессе осадконакоплення сорбируют большее количество соединений урана и тория, чем неглинистые породы. Имеет значение и калий, входящий в состав некоторых глинистых минералов

Диаграммы ГМ используют также для выделения в разрезе скважин урановых и ториевых руд, калийных солей, а также других полезных ископаемых, обладающих повышенной радиоактивностью (фосфориты, иногда марганцевые руды и др.). На рис. 2 показана типичная кривая, полученная гамма-методом в разрезе осадочных пород.

Применяя специальные приборы – спектрометры гамма-излучения, можно регистрировать вдоль скважины диаграмму изменения интенсивности гамма-квантов с заданной энергией. Такой спектрометрический гамма-метод (ГМ-С) позволяет определять отдельно содержание в породе радия, тория и калия. По соотношению этих радиоактивных элементов в принципе можно определить условия образования осадков, минеральный состав глин, разделить урановые и ториевые руды, а также некоторые другие полезные ископаемые с повышенной радиоактивностью (фосфориты, бокситы и др.).

Кроме радиоактивности горных пород, на показания гамма-метода оказывают влияние: а) поглощение гамма-излучения в скважине, зависящее от диаметра скважины, плотности бурового раствора, наличия и толщины обсадной колонны и цементного кольца; б) радиоактивность среды, заполняющей ствол скважины. Показания ГМ растут при увеличении диаметра скважины, если радиоактивность горных пород меньше радиоактивности среды, заполняющей скважину.

Рис. 2. Схематические диаграммы, полученные ядерными методами в разрезе осадочных пород.

I — каменная соль; 2 — калийная соль; 3 —глина; 4 — размытый пласт с глубокой каверной; 5 — гипс; 6 —ангидрит: 7 — известняк низкопористый; 8 — известняк вы­сокопористый; песчаник (песок); 9 — газоносный; 10 — нефтеносный; 11 – водоносный; 12 — метаморфизованная порода.

При обратном соотношении радиоактивностей горной породы и скважинной среды показания ГМ уменьшаются с ростом диаметра скважины. Обсадная колонна всегда уменьшает показания ГМ. При строгом учете влияния перечисленных факторов по результатам ГМ можно количественно определить концентрацию радиоактивных элементов в горных породах.

На показания любого ядерного метода основное влияние оказывает относительно небольшая часть окружающей среды, удаленная от зонда не более чем на несколько десятков сантиметров. Влияние остальной более удаленной части среды составляет не более нескольких процентов. Радиус сферы, из которого приходит 90—95% регистрируемого излучения, называется радиусом зоны исследования ГМ. Считается, что радиус исследования ГМ составляет примерно 30 см.

Форма диаграмм ГМ определяется усреднением (по специальному закону) радиоактивности в интервале, равном размеру зоны исследования; на нее оказывает влияние также инерционность измерительной схемы, вносимой интегрирующей ячейкой. При отсутствии интегрирующей ячейки (постоянная времени интегрирующей ячейки tя = 0) или при измерении на отдельных точках при нулевой скорости прибора (v=Q) кривая Ig против однородного одиночного пласта симметрична (рис. 3, кривая с шифром 0). При мощности пласта h³0,8 ¸ 1 м амплитуда кривой Ig не зависит от значения h, а границе пласта соответствует середина аномалий.

При vtя кривая Ig сдвигается по направлению движения прибора и становится асимметричной. Искажение тем сильнее, чем больше vtя. При недостаточно большой мощности пласта происходит уменьшение амплитуды (тем сильнее, чем меньше h<vtя). Границы пластов приблизительно определяют по началу подъема и снижения показаний ГМ.

Рис. 3. Кривые Ig против пластов большой (а) и малой (б) мощности. Шифр кривых — vt, м с/ч

Показания ГМ зависят не только от интенсивности излучения, но и от индивидуальных особенностей прибора (тип счетчика, его размер, толщина корпуса, режим питания и т. п.). В зависимости от небольших изменений этих факторов чувствительность может меняться в заметных пределах даже для серийных приборов одного и того же типа. Для исключения влияния этих факторов осуществляют эталонирование аппаратуры: в результате специальных измерений устанавливают график или коэффициенты перехода от величины отклонения пишущего устройства (или от числа импульсов в единицу времени) к истинной интенсивности гамма-излучения, выраженной в дозовых единицах (в А/кг или мкР/ч).

Для исключения влияния рассеянного гамма-излучения прибор при эталонировании подвешивают на высоте 2—3 м пал площадкой с низкоактивным грунтом. На высоте детектора на некотором расстоянии r от него помещают радиевый эталонный источник. Показания прибора регистрируют самописцем.

Истинная интенсивность излучения в точке расположения детектора определяется по формуле

Ig= KgA/r²

где А — активность радиевого эталона; Kg — гамма-постоянная радия, равная мощности дозы, создаваемой на расстоянии 1 м источником единичной активности; r — расстояние от эталона до детектора.

Подобные измерения и вычисления осуществляют при нескольких значениях r и строят эталонировочный график – зависимость показаний прибора от Ig .

В последние годы получает также распространение эталонирование в специальных эталонных (метрологических) скважинах, пробуренных на исследуемой территории пли вблизи геофизической базы. В этом случае в качестве условной единицы измерений принимают различие в показаниях против двух мощных опорных пластов с различной активностью или же среднеквадратические колебания показаний в некотором фиксированном интервале разреза эталонной скважины.


Вопрос № 2.

Кумулятивная перфорация.

При кумулятивной перфорации пласт вскрывается под действием узкой струи раскаленных газов и металла, сконцентрированной в поток большой плотности и огромной скорости. В головной части скорость струи достигает 6 – 8 км/с. Такой поток образуется при взрыве кумулятивного заряда.

При такой скорости кумулятивная струя оказывает на преграду значительное давление. В реальных средах это давление составляет несколько сотен мегапаскалей. Максимальная эффективность действия кумулятивного заряда с выемкой, облицованной металлом, достигается при расположении заряда от преграды на определенном расстоянии, которое называется фокусным. Фокусное расстояние должно быть заполнено воздушной средой.

Механизм образования кумулятивной струи из облицовки показан на рис. 4. В струю обычно переходит примерно 10% массы облицовки. Остальная часть, обжимаясь, формируется в стержень сигарообразной формы — пест, движущийся вслед за струей. Скорость струи от головной части к хвостовой снижается примерно в 3 – 4 раза, благодаря чему струя в полете растягивается и одновременно сужается в диаметре. После достижения некоторого критического значения целостность струи нарушается и она распадается на определенное число фрагментов, летящих друг за другом. Скорость хвостовой части струи составляет 2 км/с; пест имеет скорость около 1 км/с.