Электрическая схема в случае одной батареи (рис.4.12) имеет вид (рис.4.13). На рис.4.12 затемнены области внутреннего сопротивления.
Рассмотрим случай притока к n эксплуатационным и нагнетательным батареям скважин и составим схему сопротивлений. Предположим, что скважины i-ой батареи имеют забойные потенциалы jсi (i=1,...,n), пласт имеет контурные потенциалы jк1 и jк2 (рис. 4.14). Пусть jк1 > jк2. Очевидно, поток от контура питания к первому ряду скважин будет частично перехватываться первой батареей и частично двигаться ко второй. Поток ко второй батарее будет частично перехватываться второй батареей, частично двигаться к третьей и т.д. Этому движению отвечает разветвленная схема фильтрационных сопротивлений (рис. 4.15).
Расчет ведется от контура с большим потенциалом к контуру с меньшим потенциалом, а сопротивления рассчитываются по зависимостям:
прямолинейная батарея
(4.40)круговая батарея
где Li - расстояние между батареями (для i=1 - L1=Lк1 ); ri - радиусы батарей (для i=1 - r0=rк ); ki - число скважин в батареи.
Дальнейший расчет ведется, как для электрических разветвленных цепей, согласно законам Ома и Кирхгоффа:
- алгебраическая, сумма сходящихся, в узле дебитов равна нулю, если считать подходящие к узлу дебиты положительными и отходящие - отрицательными.алгебраическая сумма произведения дебитов на сопротивления (включая и внутреннее) равна алгебраической сумме потенциалов, действующих в замкнутом контуре. При этом и дебиты и потенциалы, совпадающие с произвольно выбранным направлением обхода контура, считаются положительными, а направленное навстречу обходу отрицательным.
Следует помнить, что для последовательных сопротивлений r=Sri , а для параллельных
Если одна из границ непроницаема, то расход через неё равен нулю. В этом случае в соответствующем узле схемы фильтрационных сопротивлений задаётся не потенциал, а расход. На рис. 4.16 показана схема в случае непроницаемости второго контура. Вместо потенциала jк2, показанного на рис.4.15, здесь в узле задано условие SGi=0.
Приведенные формулы тем точнее, чем больше расстояние между батареями по сравнению с половиной расстояния между скважинами. Если расстояние между скважинами много больше расстояния между батареями, то расчет надо вести по общим формулам интерференции скважин или использовать другие виды схематизации течения, например, заменить две близко расположенные соседние батареи скважин с редкими расстояниями между скважинами (рис. 4.17а) эквивалентной одной батареей - с суммарным числом скважин и проведенной посредине (рис.4.17b).
Вывод
В данной курсовой работе мы выведи дифференциальное уравнение движения сжимаемой и несжимаемой жидкости в пористой среде, то есть уравнение Лапласа. А так же рассмотрели плоские задачи теории фильтрации об установившемся притоке к скважине, такие как приток к совершенной скважине, фильтрационный поток от нагнетательной скважины к эксплуатационной, приток к группе скважин с удаленным контуром питания, приток к скважине в пласте с прямолинейным контуром питания, приток к скважине, расположенной вблизи непроницаемой прямолинейной границы, приток к скважине в пласте с произвольным контуром питания, приток к бесконечным цепочкам и кольцевым батареям скважин, приток к скважинам кольцевой батареи, приток к прямолинейной батареи скважин, метод эквивалентных фильтрационных сопротивлении.
Литература
1. Басниев В.С. и др. Подземная гидравлика. // М.:Недра,1986.-300с.
2. Евдокимова В.А., Кочина И.Н. Сборник задач по пдземной гидравлике. // М.:Недра.-166с.
3.Пыхачев Г.Б., Исаев Р.Г. Подземная гидравлика. //М:Недра,1973.- 359с.
4. Чарный И.А. Подземная гидрогазодинамика. // М. Изд.-во. Нефтяной и горно-топливной лит-ры.- 396с.
5. Баренблатт Г.И., Ентов В.М., Рыжик В.М. Движение жидкостей и газов в природных пластах. // М. Недра, 1984.- 211с.