2.1.3 Приток к скважине в пласте с прямолинейным контуром питания
Пусть в полосообразном пласте пробурена одна скважина с центром в точке О1 на расстоянии а от прямолинейного контура (ось у ) бесконечного протяжения, на котором поддерживается постоянный потенциал jк . На скважине радиуса rc поддерживается постоянный потенциал jс. Найдём дебит скважины G и распределение функции j.
Так как контур питания пласта 0у является эквипотенциальной линией, то все линии тока, сходящиеся в центре скважины О1, должны быть перпендикулярны к прямой 0у (рис.4.6). Для определения поля течения добьёмся выполнения граничных условий на контуре введением фиктивного источника О2 с дебитом, равным дебиту стока О1, путём зеркального отображения данного стока относительно прямой 0у.Т.о. используем ранее упомянутый метод отображения и задачу о потоке в пласте с прямолинейным контуром питания и с одиночной эксплуатационной скважиной сведём к ранее рассмотренной в разделе 4.1.1. задаче о совместном действии источника и стока равной производительности. Отличие данных задач только в постановке граничных условий: в задаче раздела 4.1.1. источник питания - нагнетательная скважина, а в данном случае - прямолинейный контур, а источник О2 фиктивный.
Т.о. используем для определения дебита выражение (4.10), но со следующей заменой граничных условий: j=jк при r1=r2 ,т.е. при r1/r2=1; j=jс при r1=rс , r2»2а, т.е. при r1/r2» rс /2а;
Подставляя последовательно соответствующие граничные значения j, r1 и r2 в равенство (4.10) получим два уравнения, определяющих потенциалы на контуре и забое. Из этих уравнений легко находится массовый дебит одиночной скважины в пласте с прямолинейным контуром
.(4.18)Если бы в пласте была нагнетательная скважина, то в формуле (4.18) достаточно только изменить знак правой части.
2.1.4 Приток к скважине, расположенной вблизи непроницаемой прямолинейной границы
Данная задача может возникнуть при расположении добывающей скважины вблизи сброса или около границы выклинивания продуктивного пласта. В этом случае реальную скважину-сток зеркально отображают относительно непроницаемой границы, и дебиту скважины - отображения приписывают тот же знак, что и дебиту реальной скважины. При притоке к двум равнодебитным скважинам скорость фильтрации на непроницаемой границе будет направлена вдоль границы, т.е. граница является линией тока и фильтрация через неё отсутствует. Дебит скважины определяется из уравнений (4.16) и (4.17) для n=2 в пласте с удалённым контуром питания:
.(4.19)2.1.5 Приток к скважине в пласте с произвольным контуром питания
В естественных условиях контур питания имеет произвольную форму и её не всегда удаётся определить. Кроме того, часто не удаётся определить достаточно точно и расстояние а от скважины О1 до контура. Можно ли в этом случае пользоваться формулой предыдущего раздела? Любой произвольный контур В находится между прямолинейным Впр и круговым Вкр. (рис.4.7).
Расчеты дебитов проведенные для этих двух крайних разновидностях контуров показали:
При вычислении дебита скважины форма внешнего контура пласта не имеет сколько-нибудь существенного значения.
Чем дальше от внешнего контура пласта находится скважина, тем меньший дебит она имеет. Однако, так как величина расстояния входит под знаком логарифма, то даже значительное изменение этого расстояния мало влияет на величину дебита
В случае расположения скважины эксцентрично относительно контура поток можно считать плоско-радиальным и дебит рассчитывать по формуле Дюпюи если rк.>103 rc и эксцентриситет а1< rк /2.
Таким образом, для практических расчетов точное знание формы и расстояния до контура питания необязательно, но порядок расстояния до контура питания должен быть известен.
2.1.6 Приток к бесконечным цепочкам и кольцевым батареям скважин
Рассмотрим многорядные батареи скважин. Решение задачи об интерференции скважин в пласте с удаленным контуром питания показывает, что в общем случае приходится решать столько уравнений, сколько имеется скважин. Следовательно, для получения точного решения необходимо использование ЭВМ, т.к. на месторождениях имеется десятки и сотни скважин, но можно воспользоваться с достаточной для практики точностью приближенным решением данной задачи.
При рациональной системе разработки скважины располагают обычно в виде рядов, расставленных вдоль контура нефте-газоносности и контура питания. Эти линии называются батареями или рядами скважин. Без большой погрешности можно считать дебит скважин в каждом ряду одинаковым, если в каждом ряду скважины находятся в одинаковых условиях. Дебиты же скважин в разных рядах будут отличаться друг от друга. Наибольший дебит имеет первый ряд, ближайший к контуру питания, а по мере удаления дебит уменьшается. Поэтому число одновременно работающих рядов редко превышает двух-трёх и последующие ряды включаются по мере приближения контура нефте-газоносности. Когда вода подошла к первому ряду, то он выключается и включается один из следующих рядов и т.д.
В этом случае число неизвестных уменьшается от числа скважин n до числа рядов N (обычно число рядов не превышает 2-4), а это уже гораздо более простая задача.
2.1.6.1 Приток к скважинам кольцевой батареи
Пусть центры скважин располагаются в вершинах правильного n-угольника, т.к. что скважины образуют кольцевую батарею радиуса а (рис. 4.8). Контур питания удалён от скважин на расстояние, значительно превышающее радиус батареи и тогда можно считать, что все скважины равноудалены от контура питания на расстояние rк. Будем считать, что на контуре питания поддерживается постоянное значение потенциала jк и на контуре скважин потенциал постоянен и равен jс. В данной постановке следовательно надо решить задачу о плоском течении к n точечным стокам, размещённым равномерно на окружности радиуса а. Для получения формулы дебита скважин воспользуемся формулой (4.2)
где G - массовый дебит любой скважины батареи, rj - расстояния от некоторой точки пласта до всех n скважин; h - толщина пласта.
Граничные условия:
на контуре питания j=jк=const при rj=rк;
на контуре скважины j=jс=const при r1=rс;
rj(j¹1)=2a sin[(n-1)p/n].
Используя данные граничные условия преобразуем формулу (4.20)
, (4.21) . (4.22)В последнем выражении
. (4.23)Тогда (4.22) перепишется в виде
,(4.24)и из (4.21), (4.24) получим выражение для определения дебита скважины
,(4.25)Формула (4.25) справедлива при любом целом n. В частности, при n=1 имеем выражение типа формулы Дюпюи для определения дебита при плоскорадиальном потоке:
.(4.26)Формула (4.25) - приближенная. Её можно применять в случае, если размеры пласта во много раз больше площади внутри окружности батареи скважин, например, при водонапорном режиме, когда жидкость можно считать несжимаемой. Если же в пласте установился режим растворенного газа, то трудно ожидать, что площадь, занятая газированной жидкостью, простирается до границ пласта. Если расстояние до контура незначительно превышает радиус батареи, то, строго говоря, следует воспользоваться более точной формулой
,(4.27)Эта формула при n=1 переходит в формулу определения дебита эксцентрично заложенной одиночной скважины (а - эксцентриситет скважины). В большинстве практических случаев можно пользоваться формулой (4.25), т.к. уже при rк=10а, дебиты подсчитанные по формулам (4.24) и (4.27), различаются не более чем на одну тысячную процента.
Определим дебит батареи умножив формулу (4.25) на число скважин в батареи n
.(4.28)Рассмотрим поле течения в области действия круговой батареи, т.е. построим семейства линий тока и изобар. Уравнение изобар получаем из (4.3) путём представления радиусов rj в полярной системе координат (рис. 4.8)
Данное уравнение позволяет построить поле изобар, а линии тока пересекают изобары под прямым углом.
Плоскость течения (рис. 4.9) кольцевой батареи с n равнодебитными скважинами, размещенными в вершинах правильного многоугольника, делится на n равных частей (секторов) прямыми линиями тока Н, сходящимися в центре батареи и делящими расстояние между двумя соседними скважинами пополам. Эти линии тока называются нейтральными. Другое семейство прямых линий тока Г проходит через центры скважин и делит сектор, ограниченный двумя нейтральными линиями, пополам. Это - главные линии.
Семейство изобар подразделяется на два подсемейства, которые разграничиваются изобарой пересекающей себя в центре батареи столько раз сколько скважин составляет данную батарею. Первое подсемейство изобар определяет приток к отдельным скважинам и представляет собой замкнутые, каплеобразные кривые, описанные вокруг каждой скважины. Второе семейство - определяет приток к батареи в целом и представляет собой замкнутые кривые, описанные вокруг батареи.