Смекни!
smekni.com

Выбор и расчет оборудования для депарафинизации нефтяных скважин в условиях НГДУ "ЛН" (стр. 8 из 13)

Минимальное напряжение цикла:

sтin =

МПа; (13, стр. 123) (3.16)

sтin =

= 64 МПа

10. Амплитудное напряжение цикла:

sа =

МПа, (13, стр. 123) (3.17)

sа =

= 43,2 МПа

11. Среднее напряжение цикла:

sср =

, МПа (13, стр.122) (3.18)

sср =

= 107,2 МПа

12. Приведенное напряжение цикла:

sпр =

, МПа (13, стр. 123) (3.19)

sпр =

= 80,6 МПа

Полученное значение приведенного напряжения удовлетворяет требованиям используемой колонны штанг диаметром d = 19 мм с приведенным напряжением sпр = 90 МПа, из условия sпр£[sпр].

3.6 Расчет на прочность стеклопластиковых штанг

С целью определения нагрузок, возникающих в точке подвеса штанг, произведём расчет на прочность комбинированной колонны из стальных и стеклопластиковых штанг. Расчет будем вести согласно “Методики расчета колонны штанг из композиционного материала для ШСНУ”, разработанной ВНИИнефтемаш 24.07.1994.

Исходные данные для расчета:

Номер скважины № 1696

Глубина подвески насоса Ннас = 1200м

Длина хода сальникового штока S = 0,9 м

Число качаний балансира п = 5мин-1

Средняя масса 1м колонны СПНШ тспнш = 1,05 кг

Средняя масса 1м колонны стальных штанг тст = 2,35 кг

Диаметр плунжера Дпл = 32 мм

Диаметр штанг dшт = 19 мм

Внутренний диаметр НКТ Двн = 62 мм

Плотность жидкости rж = 1090 кг/м3

1. Для вычисления максимальной нагрузки в точке подвеса штанг Ртах воспользуемся формулой Слоннеджера

Ртах=(Ршт + Рж )*(1 + S *п/137), Н (5, стр. 193) (3.20)

где: Ршт - вес колонны штанг, Н

Рж - вес столба жидкости, Н

S- длина хода сальникового штока, м

п - число ходов, мин-1

2. Вычислим вес колонны штанг Ршт

Рштнас* g*(тспнш* ? + ? *тст)= 1200 * 9,81 * (1,05*0,5 + 0,5 * 2,35) = 20012,4 Н

3. Найдем вес столба жидкости Рж

Рж=Fплнас*rж *g (13, стр.121) (3.21)

где : Fпл= p/4*Дпл2=p/4*(32*10-3) 2=8,01*10-4 м2

Рж=8,01*10-4*1200*1090 *9,81=10314,5 Н

Вычислим Ртах;

Ртах=(20012,4 + 10314,5)*(1 + 0,9 *5/137)=31323 Н

4. Минимальное усилие в точке подвеса штанг при ходе вниз

Рт1пшт1 (1 -S *п/137), Н (5, стр. 193) (3.22)

где: Ршт1- вес колонны штанг в жидкости

Ршт1нас*g* (?*g1спнш+ ? *g1ст) (13, стр.127) (3.23)

здесь: g1спнш - вес 1м СПНШ в жидкости

g1ст - вес 1м стальных штанг в жидкости

Ршт1=1200*9,81*(?*0,71+ ? *2,09)=16480,8 Н

Рт1п=16480,8*(1 -0,9*5/137)=15939,5 Н

5. Для определения напряжений, действующих в точке подвеса штанг, воспользуемся следующими формулами:

fшт=p/4*dшт2= 0,785*(19*10-3)2= 2,84*10-4 м2 (5, стр. 195) (3.24)

sтах= Ртах/ fшт = 31323/2,44*10-4=110,3 мПа (5, стр. 195) (3.25)

sт1п= Рт1п/ fшт = 15939,5/2,84*10-4=56,1 мПа (5, стр. 195) 3.26)

sа=(sтах -sт1п)/2= (110,3-56,1)/2=27,1 мПа (5, стр. 195) (3.27)

sпр=

=
= 54,7 Мпа (5, стр. 195) (3.28)

Как видно из вычислений, приведенное напряжение, действующее в точке подвеса штанг равно 54,7 МПа.

Так как по предельно допустимым приведенным напряжениям для стеклопластика у нас нет значений, то воспользуемся минимальным значением предельно допускаемых приведенных напряжений для стали марки 40. В пользу стеклопластиковых штанг говорит также, что разрушающее напряжение при растяжении у них больше, чем у стальных: 760 МПа у стеклопластика и 610 МПа у стали.

[sпр]=70мПа- приведенное напряжение для стали

Полученное sпр=54,7 мПа свидетельствует о возможности использовать в качестве материала для штанг стеклопластик.

Для приведения эксперимента было подобранно 9 скважин. Для определения эффективности использования стеклопластиковых штанг скважины были оборудованы счетчиками активной и реактивной электрической мощности.

Ниже в таблице № 14 приведены результаты расчетов.

Таблица № 14

Результаты анализа работы СПНШ

Нагрузка на головку балансира кН 1696 9288А 15470 12428а 26769 26504 16942 24356 26480
СтеклопластикСтек+стальСтальПотр. мощн с учетом веса штанг, кВтСтеклопластикСтек+стальСтальУмень. веса %Умень. потребляемой мощности 21,431,338,518,323,233 20,528,135,917,120,624,22219 10,612,718,52,93,34,53126 21,629,237,818,222,432,922,731,4 17,524,130,612,617,624,62128 12,617,127,95,6710,53832 17,122,129,910,311,814,326,117,5 22,533,339,418,524,633,115,427 11,915,726,53,94.87,34034

Сравнивая результаты можно сделать вывод, что нагрузка на головку балансира станка-качалки уменьшилась в среднем на 20-25 % при условии комплектации колонны штанг из стеклопластика и стали.

4. СПЕЦИАЛЬНАЯ ЧАСТЬ

4.1 Выбор оборудования для подачи реагента (ингибитора)

Существуют два основных способа подачи реагента в обрабатываемую систему: непрерывное (периодическое) дозирование и разовая обработка.

Наиболее эффективным способом является непрерывное дозирование, обеспечивающее постоянный контакт реагента с обрабатываемой системой и частично предупреждающее образование АСПО. Однако этот способ требует обвязки специального оборудования на устье каждой скважины (насос – дозатор, емкость для реагента, поршневой насос для смешения, манифольд и др.).

Реагент в затрубное пространство постоянно подается устьевыми дозаторами УДЭ и УДC конструкции НПО Союзнефтепромхим и СКТБ ВПО Союзнефтемашремонт.

УДЭ и УДC можно применять также для борьбы с солеотложением, коррозией оборудования нефтяных скважин и внутрискважинной деэмульсации нефти.

Электронасосная дозировочная установка УДЭ в зависимости от дозировочного насоса имеет четыре типоразмера: УДЭ 0,4/6,3; УДЭ 1/6,3; УДЭ 1,6/6,3; УДЭ 1,9/6,3. Установки комплектуются специальными дозировочными насосами: НД 0,4/6,3 К14В; НД 1/6,3 К14В; НД 1,6/6,3 К14В; НД 1,9/6,3 К14В. Они обеспечивают максимальные подачи реагента 0,4; 1; 1,6 и 1,9 л/ч при максимальном давлении нагнетания 6,3 МПа. Потребляемая мощность насоса 0,5 кВт, масса 32 кг.

Установка имеет бак на 450 л; габаритные размеры установки 1230х690х1530 мм, масса 220 кг, рабочая температура 223 – 318 К.

Принцип работы УДЭ заключается в следующем. Реагент из бака 5 через фильтр 6 по всасывающему трубопроводу 11 поступает в плунжерный насос – дозатор 13 и по нагнетательному трубопроводу 14 подается в затрубное пространство скважины. Подача регулируется изменением длины хода плунжера.

Наибольшее число установок эксплуатируется в ПО «Татнефть». Дозировочные установки изготавливаются Лениногорским заводом «Нефтеавтоматика», а дозировочные насосы – Свесским насосным заводом.

Рис. 4 Дозировочная установка УДЭ. 1- дозировочный блок, 2 – электроконтактный манометр, 3- указатель уровня, 4- заливная горловина, 5 – бак, 6 – фильтр, 7 – рама, 8 – сливной вентиль, 9, 10, 15 – вентили, 11 - всасывающий трубопровод, 12 – обратный клапан, 13 – электронасосный агрегат, 14 – нагнетательный трубопровод, 16 – кожух.

Комплектная дозировочная установка УДС с приводом от станка- качалки располагается на СК. Её нагнетательный трубопровод присоединяется к затрубному пространству скважины, а рычаг дозировочного насоса посредством гибкой тяги к балансиру СК. Подача устанавливается регулятором длины хода плунжера насоса и изменением мест крепления тяги к рычагу насоса и к балансиру СК. Подача дозировочного насоса составляет 0,04-0.63 л/с; давление нагнетания 6,3 МПа; вместимость бака 250 л, габаритные размеры 1500 х 730 х 735 мм, масса 145 кг.

По сравнению с другими дозировочными установками УДС-1 обеспечивает большую точность регулирования подачи, имеет более простую конструкцию, она безопасна (снабжена предохранительным устройством и не питается электрическим током) и удобна в эксплуатации.

Рис. 5 Дозировочная установка УДС. 1 – указатель уровня, 2 – горловина, 3 – бак, 4 – манометр, 5 – предохранительный клапан, 6 – вентиль, 7 – кожух, 8 – насос дозировочный, 9 – обратный клапан, 10 –трехходовой клапан, 11 – фильтр, 2 – рама.

Периодическое дозирование может осуществляться при использовании перечисленного выше оборудования или с помощью специального устройства для ввода реагента под давлением, первый случай имеет те же недостатки что и непрерывное дозирование. Во втором случае затрубное пространство перекрывают задвижкой 3, открывают вентиль 6 для сброса газа из емкости 4, снимают заглушку 5, закрывают вентиль 6, заливают реагент в емкость 4, закрепляют заглушку и открывают задвижку 3; регент поступает в затрубное пространство.