Минимальное напряжение цикла:
sтin =
МПа; (13, стр. 123) (3.16)sтin =
= 64 МПа10. Амплитудное напряжение цикла:
sа =
МПа, (13, стр. 123) (3.17)sа =
= 43,2 МПа11. Среднее напряжение цикла:
sср =
, МПа (13, стр.122) (3.18)sср =
= 107,2 МПа12. Приведенное напряжение цикла:
sпр = , МПа (13, стр. 123) (3.19)
sпр = = 80,6 МПа
Полученное значение приведенного напряжения удовлетворяет требованиям используемой колонны штанг диаметром d = 19 мм с приведенным напряжением sпр = 90 МПа, из условия sпр£[sпр].
3.6 Расчет на прочность стеклопластиковых штанг
С целью определения нагрузок, возникающих в точке подвеса штанг, произведём расчет на прочность комбинированной колонны из стальных и стеклопластиковых штанг. Расчет будем вести согласно “Методики расчета колонны штанг из композиционного материала для ШСНУ”, разработанной ВНИИнефтемаш 24.07.1994.
Исходные данные для расчета:
Номер скважины № 1696
Глубина подвески насоса Ннас = 1200м
Длина хода сальникового штока S = 0,9 м
Число качаний балансира п = 5мин-1
Средняя масса 1м колонны СПНШ тспнш = 1,05 кг
Средняя масса 1м колонны стальных штанг тст = 2,35 кг
Диаметр плунжера Дпл = 32 мм
Диаметр штанг dшт = 19 мм
Внутренний диаметр НКТ Двн = 62 мм
Плотность жидкости rж = 1090 кг/м3
1. Для вычисления максимальной нагрузки в точке подвеса штанг Ртах воспользуемся формулой Слоннеджера
Ртах=(Ршт + Рж )*(1 + S *п/137), Н (5, стр. 193) (3.20)
где: Ршт - вес колонны штанг, Н
Рж - вес столба жидкости, Н
S- длина хода сальникового штока, м
п - число ходов, мин-1
2. Вычислим вес колонны штанг Ршт
Ршт=Ннас* g*(тспнш* ? + ? *тст)= 1200 * 9,81 * (1,05*0,5 + 0,5 * 2,35) = 20012,4 Н
3. Найдем вес столба жидкости Рж
Рж=Fпл*Ннас*rж *g (13, стр.121) (3.21)
где : Fпл= p/4*Дпл2=p/4*(32*10-3) 2=8,01*10-4 м2
Рж=8,01*10-4*1200*1090 *9,81=10314,5 Н
Вычислим Ртах;
Ртах=(20012,4 + 10314,5)*(1 + 0,9 *5/137)=31323 Н
4. Минимальное усилие в точке подвеса штанг при ходе вниз
Рт1п=Ршт1 (1 -S *п/137), Н (5, стр. 193) (3.22)
где: Ршт1- вес колонны штанг в жидкости
Ршт1=Ннас*g* (?*g1спнш+ ? *g1ст) (13, стр.127) (3.23)
здесь: g1спнш - вес 1м СПНШ в жидкости
g1ст - вес 1м стальных штанг в жидкости
Ршт1=1200*9,81*(?*0,71+ ? *2,09)=16480,8 Н
Рт1п=16480,8*(1 -0,9*5/137)=15939,5 Н
5. Для определения напряжений, действующих в точке подвеса штанг, воспользуемся следующими формулами:
fшт=p/4*dшт2= 0,785*(19*10-3)2= 2,84*10-4 м2 (5, стр. 195) (3.24)
sтах= Ртах/ fшт = 31323/2,44*10-4=110,3 мПа (5, стр. 195) (3.25)
sт1п= Рт1п/ fшт = 15939,5/2,84*10-4=56,1 мПа (5, стр. 195) 3.26)
sа=(sтах -sт1п)/2= (110,3-56,1)/2=27,1 мПа (5, стр. 195) (3.27)
sпр=
= = 54,7 Мпа (5, стр. 195) (3.28)Как видно из вычислений, приведенное напряжение, действующее в точке подвеса штанг равно 54,7 МПа.
Так как по предельно допустимым приведенным напряжениям для стеклопластика у нас нет значений, то воспользуемся минимальным значением предельно допускаемых приведенных напряжений для стали марки 40. В пользу стеклопластиковых штанг говорит также, что разрушающее напряжение при растяжении у них больше, чем у стальных: 760 МПа у стеклопластика и 610 МПа у стали.
[sпр]=70мПа- приведенное напряжение для стали
Полученное sпр=54,7 мПа свидетельствует о возможности использовать в качестве материала для штанг стеклопластик.
Для приведения эксперимента было подобранно 9 скважин. Для определения эффективности использования стеклопластиковых штанг скважины были оборудованы счетчиками активной и реактивной электрической мощности.
Ниже в таблице № 14 приведены результаты расчетов.
Таблица № 14
Результаты анализа работы СПНШ
Нагрузка на головку балансира кН | 1696 | 9288А | 15470 | 12428а | 26769 | 26504 | 16942 | 24356 | 26480 |
СтеклопластикСтек+стальСтальПотр. мощн с учетом веса штанг, кВтСтеклопластикСтек+стальСтальУмень. веса %Умень. потребляемой мощности | 21,431,338,518,323,233 | 20,528,135,917,120,624,22219 | 10,612,718,52,93,34,53126 | 21,629,237,818,222,432,922,731,4 | 17,524,130,612,617,624,62128 | 12,617,127,95,6710,53832 | 17,122,129,910,311,814,326,117,5 | 22,533,339,418,524,633,115,427 | 11,915,726,53,94.87,34034 |
Сравнивая результаты можно сделать вывод, что нагрузка на головку балансира станка-качалки уменьшилась в среднем на 20-25 % при условии комплектации колонны штанг из стеклопластика и стали.
4. СПЕЦИАЛЬНАЯ ЧАСТЬ
4.1 Выбор оборудования для подачи реагента (ингибитора)
Существуют два основных способа подачи реагента в обрабатываемую систему: непрерывное (периодическое) дозирование и разовая обработка.
Наиболее эффективным способом является непрерывное дозирование, обеспечивающее постоянный контакт реагента с обрабатываемой системой и частично предупреждающее образование АСПО. Однако этот способ требует обвязки специального оборудования на устье каждой скважины (насос – дозатор, емкость для реагента, поршневой насос для смешения, манифольд и др.).
Реагент в затрубное пространство постоянно подается устьевыми дозаторами УДЭ и УДC конструкции НПО Союзнефтепромхим и СКТБ ВПО Союзнефтемашремонт.
УДЭ и УДC можно применять также для борьбы с солеотложением, коррозией оборудования нефтяных скважин и внутрискважинной деэмульсации нефти.
Электронасосная дозировочная установка УДЭ в зависимости от дозировочного насоса имеет четыре типоразмера: УДЭ 0,4/6,3; УДЭ 1/6,3; УДЭ 1,6/6,3; УДЭ 1,9/6,3. Установки комплектуются специальными дозировочными насосами: НД 0,4/6,3 К14В; НД 1/6,3 К14В; НД 1,6/6,3 К14В; НД 1,9/6,3 К14В. Они обеспечивают максимальные подачи реагента 0,4; 1; 1,6 и 1,9 л/ч при максимальном давлении нагнетания 6,3 МПа. Потребляемая мощность насоса 0,5 кВт, масса 32 кг.
Установка имеет бак на 450 л; габаритные размеры установки 1230х690х1530 мм, масса 220 кг, рабочая температура 223 – 318 К.
Принцип работы УДЭ заключается в следующем. Реагент из бака 5 через фильтр 6 по всасывающему трубопроводу 11 поступает в плунжерный насос – дозатор 13 и по нагнетательному трубопроводу 14 подается в затрубное пространство скважины. Подача регулируется изменением длины хода плунжера.
Наибольшее число установок эксплуатируется в ПО «Татнефть». Дозировочные установки изготавливаются Лениногорским заводом «Нефтеавтоматика», а дозировочные насосы – Свесским насосным заводом.
Рис. 4 Дозировочная установка УДЭ. 1- дозировочный блок, 2 – электроконтактный манометр, 3- указатель уровня, 4- заливная горловина, 5 – бак, 6 – фильтр, 7 – рама, 8 – сливной вентиль, 9, 10, 15 – вентили, 11 - всасывающий трубопровод, 12 – обратный клапан, 13 – электронасосный агрегат, 14 – нагнетательный трубопровод, 16 – кожух.
Комплектная дозировочная установка УДС с приводом от станка- качалки располагается на СК. Её нагнетательный трубопровод присоединяется к затрубному пространству скважины, а рычаг дозировочного насоса посредством гибкой тяги к балансиру СК. Подача устанавливается регулятором длины хода плунжера насоса и изменением мест крепления тяги к рычагу насоса и к балансиру СК. Подача дозировочного насоса составляет 0,04-0.63 л/с; давление нагнетания 6,3 МПа; вместимость бака 250 л, габаритные размеры 1500 х 730 х 735 мм, масса 145 кг.
По сравнению с другими дозировочными установками УДС-1 обеспечивает большую точность регулирования подачи, имеет более простую конструкцию, она безопасна (снабжена предохранительным устройством и не питается электрическим током) и удобна в эксплуатации.
Рис. 5 Дозировочная установка УДС. 1 – указатель уровня, 2 – горловина, 3 – бак, 4 – манометр, 5 – предохранительный клапан, 6 – вентиль, 7 – кожух, 8 – насос дозировочный, 9 – обратный клапан, 10 –трехходовой клапан, 11 – фильтр, 2 – рама.
Периодическое дозирование может осуществляться при использовании перечисленного выше оборудования или с помощью специального устройства для ввода реагента под давлением, первый случай имеет те же недостатки что и непрерывное дозирование. Во втором случае затрубное пространство перекрывают задвижкой 3, открывают вентиль 6 для сброса газа из емкости 4, снимают заглушку 5, закрывают вентиль 6, заливают реагент в емкость 4, закрепляют заглушку и открывают задвижку 3; регент поступает в затрубное пространство.