Смекни!
smekni.com

Борьба с парафином в условиях НГДУ "Лениногорскнефть" (стр. 4 из 8)

3.2.2 Применение покрытий для борьбы с АСПО

Покрытия труб эпоксидными смолами

Преимущество такого покрытия состоит в том, что увеличивается межочистной период работы скважин, оборудованных трубами с покрытиями за счет того, что кристаллы асфальто-смолопарафиновых отложений имеют плохую адгезию с покрытием. Внутренняя поверхность НКТ защищается покрытием от воздействия коррозии при добыче высокообводненной нефти.

Недостатками покрытия являются: истирание покрытия штанговой колонной, отслоение покрытия при пропарке труб, засорение скважин отслоившимся покрытием, засорение клапанов насосов покрытием, истирание покрытия центраторами.

Покрытие труб стеклогранулянтом

Ранее в качестве основного вида защитного покрытия НКТ в НГДУ «ЛН» применяется стекло. Остеклование внутренней поверхности НКТ проводится в цеху антикоррозионного покрытия труб. С 1993 года НКТ стали покрывать гранулированным стеклом, что позволило заметно улучшить прочностные качества покрытия, увеличить срок службы НКТ, уменьшить количество подземных ремонтов по причине засорения насосов осыпающимся стеклом.

Адгезия стекла к стенке НКТ при Т = 8500С хорошая, что позволяет эксплуатировать НКТ, как в вертикальных, так и в горизонтальных скважинах, а также позволяет производить пропарку НКТ без последствий для покрытия. Однако, НКТ с данным видом покрытия не подтвердил свою эффективность на практике.

В 1998 – 99 годах на 4 скважинах были внедрены НКТ с полимерным покрытием DPS БМЗ. На одной скважине НКТ с данным типом спущены в комбинации со штангами наплавленными центраторами – депарафинизаторами. На двух скважинах проводятся разовые дистилятные промывки.

Применение стеклопластиковых штанг

С декабря 1995 года в НГДУ «ЛН» начали внедрять стеклопластиковые штанги. В течение 1995–1996 года они были внедрены на 14 скважинах, как девонских, так и сернистых скважинах с различной обводненности, добываемой продукции.

Опыт в эксплуатации стеклопластиковых штанг показал их хорошие прочностные и эксплуатационные характеристики, по сравнению со стальными штангами, нагрузка на головку балансира снизилась на 25%. Положительными факторами в работе стеклопластиковых штанг является то, что центраторы хорошо армируются на теле штанг, а так же не подвержены коррозии в скважинах с большим содержанием сероводорода и высокой обводненностью добываемой продукции.

Недостатками стеклопластиковых штанг является слабое соединение узла стеклопластика с металлической головкой, а так же они менее работоспособны в скважинах со значительным отложением парафина, так в скважинах 9288 А, 24356, 9232, 12446 стеклопластиковые штанги были извлечены из-за обрывов штанг по причине больших дополнительных нагрузок при запарафинивании колонны НКТ.

В качестве эксперимента НГДУ «ЛН» была закуплена партия стеклопластиковых штанг. СПНШ изготавливаются из сплетенных жгутов стеклонитей, пропитанных эпоксидной смолой.

Штанги состоят из двух головок и стеклопластикового стержня, которые крепятся между собой с помощью эпоксидной смолы.

Таблица. 6 Техническая характеристика СПНШ

Номинальный диаметр по телуДлинаПлотностьРазрушающее напряжение при растяженииУсталостная прочность (количество циклов до разрушения)Эксплуатация и хранение при Т 19 мм8000–8500 м2,00г/см3760 Мпа1,2·1012(у стальных) 1,05·108от -50° до +90 °C

3.2.3 Физические методы, применяемые в НГДУ «ЛН» для борьбы с отложениями АСПО

В НГДУ «ЛН» магнитные депарафинизаторы типа МОЖ-22Ш были внедрены на 17 скважинах (в 2000 году – на 7 скважинах, в 2002 году – на 10 скважинах) В качестве основного метода борьбы с АСПО магнитные депарафинизаторы были использованы на трех скважинах (№108, 6551А, 12518А), на 4 скважинах – в комбинации с остеклованными НКТ и на 10 скважинах – в комбинации со штангами центраторами – депарафинизаторами.

За период с октября 2000 года, когда началось внедрение магнитных депарафинизаторов, по октябрь 2002 года на данной категории скважин было проведено 16 подземных ремонтов по причине АСПО, причем на 3 скважинах (№108, 4030, 12946) по два ремонта. На скважинах, где магнитные депарафинизаторы были использованы в качестве основного метода борьбы с АСПО без применения других методов, межочистной период составил 50–110 суток и при подземных ремонтах по причине АСПО они были извлечены. На остальных скважинах межочистной период составил от 80 до 360 суток.

Анализ применения магнитных депарафинизаторов в качестве самостоятельного метода борьбы с АСПО и в комбинации с другими методами показал неэффективность данного метода и отказ от его применения в дальнейшем.

3.2.4 Химические методы, применяемые в НГДУ «ЛН» для борьбы с отложениями АСПО

3.2.4.1 Применение промывок различного типа

В качестве дополнительного метода борьбы с АСПО, в НГДУ «ЛН» на 77,9% осложненного фонда скважин, эксплуатируемых УШГН, используются промывки различного типа (дистиллятом в комбинации с нефтью, МЛ-80Б).

Динамика проведения промывок представлена в таблице 7


Таблица 7. Динамика проведения промывок

Виды промывок Годы
1997 1998 1999 10 месяцев
2000 2001
Всего промывок,– дистиллят + нефть 1516745 16841174 1289625 1128546 938551

В качестве растворителя используется нефтяной дистиллят, как собственного производства, так и получаемый в ОЭ НГДУ «Татнефтебитум».

Более 58% всех проведенных в 2004 году обработок составили промывки дистиллятом в комбинации с нефтью. Содержание нефти в растворе при этом составляет от 20 до 50%. Выбор концентрации осуществляется технологическими службами нефтепромыслов с учетом скважинных условий.

Всего промывками охвачено 484 скважины с периодичностью промывок 2–3 раза в год. Объем разовой нефтедистиллятной обработки составляет в среднем 8 м3.

3.2.4.2 Гидравлический расчет промывки скважины нефтедистиллятной смесью

Исходные данные:

Скважина №1828А,

Н забой = 1620 м – искусственный забой,

Диаметр эксплуатационной колонны Dэкс. к =146 мм,

Диаметр НКТ dHKT = 73 мм,

Диаметр штанг dШТ. = 22 мм,

НН2Б – 44,

Плотность дистиллята ρД = 707 кг/м3,

Q = 8 м3, В=0%.

Техника для промывки:

ЦА – 320; dпоршня = 100 мм; N = 180 л/с

Производительность агрегата:

1 скорость – 1,4 л/с 2 скорость – 2,55 л/с

3 скорость – 4,8 л/с 4 скорость – 8,65 л/с

1. Расчет гидравлического сопротивления при движении дистиллята в кольцевом пространстве.

P1 = λ· (HHKT · ρД)/(Dэкс.к – dHKT) х (vн2/2), Πa(1)

где: l – коэффициент трения, l = 0,035;

ННКТ - длина колонны НКТ, м;

v н – скорость нисходящего потока жидкости, м/с;

ρД – удельный вес дистиллята, кг/м3;

Dэкс. к – диаметр эксплуатационной колонны, м;

dHKT– диаметр НКТ, м;

При работе на 1 скорости:

Р1 = 0,035·(1450·707)/(0,146 – 0,073) х (0,172/2) = 0,0071·106 Па;

на 2 скорости:

Р1 = 0,035·(1450·707)/(0,146 – 0,073) х (0,372/2) = 0,0339·106 Па;

на скорости 3:

Р1 = 0,035·(1450·707)/(0,146 – 0,073) х (0,532/2) = 0,0696·106 Па;

на скорости 4:

Р1 = 0,035·(1450·707)/(0,146 – 0,073) х (1,032/2) = 0,263·106 Па.

2. Гидравлическое сопротивление по уравновешиванию столбов жидкости в НКТ и колонне:

P2 = (ρн – ρД)·g ·ННКТ,(2)

где: ρн – плотность нефти.

С достаточной точностью для расчетов

P2 = (820 –707)·9,81·1450 = 1,607 ·106 Па

3. Гидравлическое сопротивление в трубах НКТ:

Р3 = j ·lНКТ· ННКТ·ρД · v 2в/[2 (dВН – dШТ.)](3)

где: j – коэффициент, учитывающий потери на местных сопротивлениях при движении дистиллята в НКТ,

j =1,1;

lНКТ – коэффициент трения в НКТ, lНКТ = 0,04;

dВН – внутренний диаметр НКТ, м;

dШТ. – диаметр штанг, м;

v в-скорость восходящего потока, м/с;

на 1 скорости:

Р3 = 1,1·0,04·1450·707·0,4 2/[2·(0,062 – 0,022)] = 0,09·10 6 Па

на 2 скорости

Р3 = 1,1·0,04·1450·707·0,8 2/[2·(0,062 – 0,022)] = 0,361·10 6 Па

на скорости 3

Р3 = 1,1·0,04·1450·707·1,6 2/[2·(0,062 – 0,022)] = 1,443·10 6 Па

на скорости 4

Р3 = 1,1·0,04·1450·707·2,91 2/[2·(0,062 – 0,022)] = 4,775·10 6 Па

Гидравлические сопротивления на выходе агрегата ЦА-320 при обратной промывке ничтожно малы, при расчете их не используют.

5. Давление на выкиде насоса:

Рв = Р1+ Р2+ Р3;(4)

На 1 скорости:

Рв = 0,0071·10 6 + 1,607·10 6 + 0,09·10 6 = 1,704·10 6 Па;

На 2 скорости:

Рв = 0,0339·10 6 + 1,607·10 6 + 0,361·10 6 =2,002·10 6 Па;

На 3 скорости:

Рв = 0,0696·10 6 + 1,607·10 6 + 1,443·10 6 =3,120·10 6 Па;

На 4 скорости:

Рв = 0,263·10 6 + 1,607·10 6 + 4,775·10 6 =6,645·10 6 Па.

6. Рассчитываем мощность насоса:

N = Pв· Q/η,(5)

где η – К.П.Д насоса, η = 0,65;

на 1 скорости:

N =1,704·10 6 Па·1,4/0,65 = 3,67 кВт;

на 2 скорости:

N =1,704·10 6 Па·2,55/0,65 = 6,68 кВт;

на 3 скорости:

N =1,704·10 6 Па·4,8/0,65 = 12,58 кВт;

на 4 скорости:

N =1,704·10 6 Па·8,65/0,65 = 22,68 кВт.

7. Использование максимальной мощности:

К =

(6),