На сегодняшний день не применяются:
1. Микробиологические обработки скважин, как не эффективные.
2. Магнитные депарафинизаторы, начиная с 1999 г, они не применяются, как не эффективные.
3. Ингибиторы парафиноотложения, из-за высокой стоимости затрат на внедрение.
4. Электропрогрев НКТ, как экономически не выгодный.
3.7 Контроль за работой скважин, на которых применяются методы борьбы с АСПО
В технологической службе промысла имеется список скважин парафинистого и осложненного фонда . Именно на этих скважинах применяются средства борьбы с АСПО и за ними ведется постоянный контроль. Контроль заключается в следующем:
1. Два раза в месяц снимается диннамограмма работы глубинно-насосного оборудования. Динамометрирование осуществляется при помощи приборов для записи или визуального наблюдения динамограмм - динамографов или динамоскопов. На промыслах применяется динамограф ДГ-3 (ГДМ-3). С помощью диннамограммы определяются качественные показатели работы глубинно-насосного оборудования: Во первых, определяются отдельные параметры пласта и скважины и проверяется режим работы насосной установки. Во вторых, проверяется исправность работы штангового насоса и выявляются механические неисправности отдельная узлов подземного оборудования: негерметичность приемного и нагнетательного клапанов насоса, влияние газа, прихват плунжера, обрыв штанг, неправильность монтажа насоса, негерметичность труб.
Динамограмма штангового насоса представляет собой замкнутую кривую. Она записывается на бумажной ленте в промежуточной системе координат. Размеры и форма динамограммы определяются длиной хода полированного штока и действующих на него усилий, которые, в свою очередь , зависят от глубины спуска и диаметра насоса, числа качаний и от характера нарушений в подземном оборудовании или гидростатической нагрузки на плунжер. Неисправности насосной установки и другого глубинно-насосного оборудования можно определить по динамограмме, т.к. они влияют на форму и размеры динамограммы.
2. На скважинах подверженных запарафиниванию проводят периодический демонтаж: устьевой арматуры и наблюдают за интенсивностью парафинизации. Задача работников промысла не допустить полной парафинизации оборудования устьевой арматуры. Для этого периодически проводят пропарку устьевой арматуры с помощью ППУ. Когда расстояние от насоса до устья защищено скребками-центраторами, центраторами-депарафинизаторами, применением НКТ с защитным покрытием), то отложение парафина происходит в устьевой арматуре, поэтому так важно следить за ее исправностью и своевременно применять меры по предупреждению и удалению парафина. Периодичность пропарки определяют по наличию парафина и скорости его отложения в устьевой арматуре.
3. Ежедневно производят замер дебита жидкости на групповых замерных установках и находят зависимость «дебит- динамический уровень» Изменения динамического уровня измеряют с помощью эхолота. Если дебит жидкости уменьшается то происходит увеличение столба жидкости в затрубном пространстве (при условии что Рпл. постоянно) При этом Ндин уменьшается. По мере уменьшения Ндин судят о запарафинивании НКТ, при котором происходит уменьшение проходного сечения труб, что ведет к уменьшению дебита и неполадкам в работе глубинно-насосного оборудования.
4.Замеряют давление с помощью манометра. Изменение давления во времени фиксируется при помощи манометра, установленного на манифольде устьевой арматуры. По результатам замеров забойного (или затрубного) давлений и дебитов строится индикаторная кривая восстановления давления, а на основании серии определений динамического уровня получается кривая воcстановления уровня.
По кривым воcстановления уровня или давления определяется коэффициент продуктивности скважины.
Контроль технического состояния объектов насосной нефтедобычи по замерам дебита и динамометрирования (телединамометрирования) осуществляется на нижнем уровне т.е., в цехе.
Вся информация о выявленных аварийных случаях передается в центральную инженерно-технологическую службу(ЦИТС). В центральной диспетчерской службе ЦДНиГ-1 формируются графики движения бригад текущего и капитального ремонтов.
3.8 Расчет подбора глубинно-насосного оборудования скважины при внедрении скребков
Исходные данные
Расчеты проводятся для скважины 6029. Глубина скважины L=1800 м, забойное давление Рзаб=9 МПа, планируемый дебит жидкости Qжд=25м3/с, объемная обводненность продукции 0,6, плотность дегазированной нефти 870 кг/м3, плотность пластовой воды 1180 кг/м, плотность газа 1,2 кг/м3, кинематическая вязкость жидкости 1,9*10-6м2/с, газовый фактор Г0=54м3/т, давление насыщения нефти Рнас=8 МПа, устьевое давление Ру=1,2 МПа, средняя температура скважины Т=343 К, объемный коэффициент нефти вн=1,13, процентное содержание воды в нефти nв=38%
Расчет и подбор глубинного оборудования.
1.Для откачки обводненной смеси давление на приеме насоса
Рпн = 0,3 * Рнас (1),
где Рпн – давление на приеме насоса, МПа
Рнас – давление насыщения МПа
где ρсм – плотность смеси кг/м3
Нскв – глубина скважины м
Рн – давление на приеме насоса, МПа
Рзаб.опт – давление забойное опт., МПа
Рзаб.опт = Рнас
3.Определяем плотность пластовой жидкости с учетом процентного содержания воды в нефти 38%,т.к. nв 80% ,то
(3),
где в – объемный коэффициент нефти
ρн – плотность нефти кг/м3
ρг - плотность газа кг/м3
ρв - плотность пластовой воды кг/м3
G – газовый фактор м3/т
где Qнд – планируемый дебит жидкости м3/с
ßв – объемная обводненность продукции
Qнд = 25* (1-0,6) = 10т/сут
5.Объемные коэффициенты нефти вн(р) и жидкости вж(р) рассчитываются:
(5),где, вн – объемный коэффициент нефти
Рнас – давление насыщения нефти, МПа
где, вн – объемный коэффициент нефти
Рнас- давление насыщения нефти МПа
6.Расход жидкости.
(6),7.Количество растворенного в нефти газа определяют:
(7),где, Рнас- давление насыщения нефти МПа
8.Расход свободного газа.
(8),9.Расход газонасыщенной смеси:
(9),
10. Выбираем тип СКН, диаметр насоса. ПШГН8-3-5500, Д=32мм.
11.Выбираем тип насоса с учетом глубины спуска насоса L=1232м.
Тип насоса RHAM 20-125.
Тип насоса –вставной; Условный диаметр-60мм. ;Наружный диаметр-60,3мм.; Внутренний диаметр-50,3мм.; Толщина стенки-5мм.
Расчет и подбор ступенчатых колонн насосных штанг со скребка-
ми – центраторами.
1.Длина нижней ступени насосных штанг
(10),где Рж - вес столба жидкости над плунжером, равный глубине установки насоса
fшт2-площадь сечения штанг нижней ступени
qшт2- вес 1 м штанг нижней ступени ,qшт2=2,35кг
Максимально допустимое напряжение на растяжение в зависимости от группы прочности стали
С учетом скребков, принимая вес одного скребка 140гр, на штанге длиной 8м направляется 6 скребков, тогда вес 1м штанг будет равен:qшт2=2,425кг.
Коэффициент плавучести штанг: карх=0,94.
Фактор динамичности:
2.Длина верхней ступени штанг
(11),где, fшт1 – площадь поперечного сечения штанг верхней ступени