Цикл – это сочетание многоводных, маловодных и средних по водности лет. Включение в расчетный период наблюдений одной многоводной фазы дает преувеличение, только маловодной фазы – преуменьшение нормы стока.
Расчетный (репрезентативный) период устанавливается во всех случаях, когда продолжительность наблюдений не превышает 50–60 лет. Он включает наибольшее число законченных циклов, состоящих из групп многоводных и маловодных лет. Принимаются во внимание лишь основные продолжительные циклы, распространяющиеся на большие территории и охватывающие все реки данного района.
Цикличность колебаний стока и расчетный период для определения нормы стока устанавливают с помощью разностных суммарных кривых годового стока. Наиболее удобно строить суммарные кривые в относительных величинах – модульных коэффициентах К.
Расчеты по определению нормы стока, коэффициента вариации CV и для построения суммарной кривой удобнее свести в таблицу 7.
По выше приведенным формулам и по данным таблицы 7 определяют Q0 и Cv. По значениям графы 6 строится зависимость S(k-1)=f(t). Пример такой кривой приведен на рисунке 9.
Таблица 7
№ | год | ср. г.расх. | мод. коэф.K | K i -1 | ∑(K i -1) | (K i -1)² |
1 | 1932 | 2,51 | 1,05 | 0,0493 | 0,0493 | 0,00 |
2 | 1933 | 2,55 | 1,07 | 0,07 | 0,12 | 0,00 |
3 | 1934 | 2,60 | 1,09 | 0,09 | 0,20 | 0,01 |
4 | 1935 | 2,35 | 0,98 | -0,02 | 0,18 | 0,00 |
5 | 1936 | 2,12 | 0,89 | -0,11 | 0,08 | 0,01 |
6 | 1937 | 2,15 | 0,90 | -0,10 | -0,02 | 0,01 |
7 | 1938 | 1,58 | 0,66 | -0,34 | -0,36 | 0,12 |
8 | 1939 | 2,11 | 0,88 | -0,12 | -0,48 | 0,01 |
9 | 1940 | 2,37 | 0,99 | -0,01 | -0,48 | 0,00 |
10 | 1941 | 2,43 | 1,02 | 0,02 | -0,47 | 0,00 |
11 | 1942 | 3,26 | 1,36 | 0,36 | -0,11 | 0,13 |
12 | 1943 | 1,81 | 0,76 | -0,24 | -0,35 | 0,06 |
13 | 1944 | 1,80 | 0,75 | -0,25 | -0,60 | 0,06 |
14 | 1945 | 2,22 | 0,93 | -0,07 | -0,67 | 0,01 |
15 | 1946 | 2,45 | 1,02 | 0,02 | -0,64 | 0,00 |
16 | 1947 | 1,88 | 0,79 | -0,21 | -0,86 | 0,05 |
17 | 1948 | 2,15 | 0,90 | -0,10 | -0,96 | 0,01 |
18 | 1949 | 3,02 | 1,26 | 0,26 | -0,70 | 0,07 |
19 | 1950 | 2,46 | 1,03 | 0,03 | -0,67 | 0,00 |
20 | 1951 | 2,00 | 0,84 | -0,16 | -0,83 | 0,03 |
21 | 1952 | 2,43 | 1,02 | 0,02 | -0,82 | 0,00 |
22 | 1953 | 2,28 | 0,95 | -0,05 | -0,86 | 0,00 |
23 | 1954 | 2,29 | 0,96 | -0,04 | -0,91 | 0,00 |
24 | 1955 | 2,97 | 1,24 | 0,24 | -0,66 | 0,06 |
25 | 1956 | 2,98 | 1,25 | 0,25 | -0,42 | 0,06 |
26 | 1957 | 2,16 | 0,90 | -0,10 | -0,52 | 0,01 |
27 | 1958 | 2,35 | 0,98 | -0,02 | -0,53 | 0,00 |
28 | 1959 | 2,47 | 1,03 | 0,03 | -0,50 | 0,00 |
29 | 1960 | 2,08 | 0,87 | -0,13 | -0,63 | 0,02 |
30 | 1961 | 2,30 | 0,96 | -0,04 | -0,67 | 0,00 |
31 | 1962 | 2,99 | 1,25 | 0,25 | -0,42 | 0,06 |
32 | 1963 | 2,23 | 0,93 | -0,07 | -0,49 | 0,00 |
33 | 1964 | 2,56 | 1,07 | 0,07 | -0,42 | 0,00 |
34 | 1965 | 2,16 | 0,90 | -0,10 | -0,51 | 0,01 |
35 | 1966 | 3,01 | 1,26 | 0,26 | -0,26 | 0,07 |
36 | 1967 | 2,67 | 1,12 | 0,12 | -0,14 | 0,01 |
37 | 1968 | 2,30 | 0,96 | -0,04 | -0,18 | 0,00 |
38 | 1969 | 2,88 | 1,20 | 0,20 | 0,03 | 0,04 |
39 | 1970 | 2,56 | 1,07 | 0,07 | 0,10 | 0,00 |
40 | 1971 | 2,30 | 0,96 | -0,04 | 0,06 | 0,00 |
41 | 1972 | 2,72 | 1,14 | 0,14 | 0,19 | 0,02 |
42 | 1973 | 2,64 | 1,10 | 0,10 | 0,30 | 0,01 |
43 | 1974 | 1,96 | 0,82 | -0,18 | 0,12 | 0,03 |
44 | 1975 | 2,26 | 0,94 | -0,06 | 0,06 | 0,00 |
∑ Qi = | 102,86 | ∑Ki = | ∑(Ki-1) = | ∑(Ki-1)²= | ||
Qn = ∑Qi / n = | 2,39 | 43,00 | 0,00 | 1,00 |
Q on = | 2,391 | |
σ = | 0,309 | |
Cv = | 0,129 | |
ε Q%= | 1,656 | < 5…10% |
ε Cv% = | 9,129 | <10…15% |
9,028 | <10…15% | |
Q N = Q on |
При водохозяйственном планировании, строительном и энергетическом проектировании, которые предусматривают естественный или видоизмененный режим речного стока, необходимо знать не только среднюю величину (норму) стока, но и сток маловодных и многоводных лет, а также пределы возможных колебаний годового стока в будущем многолетнем периоде.
Если бы колебания стока имели определенную периодичность и был бы известен закон колебаний, то по имеющимся данным наблюдений можно было бы установить хронологический ход стока на заданный будущий период времени и определить, когда будет наблюдаться та или иная величина стока или сколько раз за это время годовой сток превысит то или иное значение. Но такая задача пока неразрешима. Поэтому расчеты годового стока и других его характеристик представляются в виде количественной оценки отвечающей той или иной заданной обеспеченности или повторяемости – в среднем один раз в N лет без указания срока наступления расчетной величины.
Обеспеченностью гидрологической величины называется вероятность того, что рассматриваемое ее значение может быть превышено. При этом различают:
- вероятность превышения для явлений, наблюдаемых только один раз в году;
– вероятность превышения среди совокупности всех возможных значений для явлений, которые могут наблюдаться несколько раз в году;
– вероятность превышения в рассматриваемом пункте или на рассматриваемой территории в любом пункте.
Вероятность служит мерой оценки достоверности появления того или иного значения рассматриваемой характеристики или явления.
Различают теоретическую вероятность (lim m/n=p) и эмпирическую вероятность или частность (m/n), выявляемую из наблюдений частоты появления благоприятных случаев, составляющих очень длинный ряд.
Для установления эмпирической обеспеченности членов ограниченного ряда, которая бы в большой мере отвечала теоретической обеспеченности, предложено несколько формул, среди них формулы:
С.Н. Крицкого и М.Ф. Менкеля /4/
p=(m/(n+1)) 100% (23)
Н.Н. Чегодаева
p=((m-0.3)/(n+0.4)) 100% (24)
Формула (23) выведена в предположении, что используемый в расчетах ряд, охватывающий ni – летний период, среди других n – летних периодов, составляющих генеральную совокупность, характеризуется повышенной водностью высоких расходов и пониженной низких. Она дает некоторый запас (завышение) в верхней части кривой обеспеченности и рекомендуется для расчетов максимальных расходов.
Формула (24) основана на предположении, что рассматриваемый ni – летний период по своей водности занимает медианное положение среди других n – летних периодов. Эта формула дает запас (занижение) в нижней части кривой обеспеченности и рекомендуется при расчетах годового, сезонного и минимального стока.
Для построения теоретических кривых обеспеченности, которые соответствовали бы эмпирическим кривым, необходимо по данным наблюдений вычислить значения параметров их дифференциального уравнения и произвести его интегрирование.
Практически достаточно установить три основных параметра теоретической кривой распределения – среднюю многолетнюю величину (норму) Q, которая, будучи выражена в относительных единицах – модульных коэффициентах K, равна единице; коэффициент изменчивости (вариации) Cv; коэффициент асимметрии Cs, по которым могут быть построены теоретические кривые обеспеченности годового стока по формуле /2,4/:
Kр%=Фр%×Cv+1 (25)
где Фр% = – Фр% (Cs, p%), функция Фостера принимается по табл.
Теоретическую кривую обеспеченности необходимо сопоставить с данными непосредственных наблюдений, вычисленными по формулам 23 или 24. Если точки эмпирической обеспеченности, нанесенные на график теоретической кривой обеспеченности, осредняют последнюю, значит она соответствует действительности. Несоответствие эмпирических точек и теоретической кривой обеспеченности указывает на неправильность определения параметров кривой, в первую очередь на неточность определения коэффициента асимметрии Cs. В этом случае необходимо изменить соотношение Cs и Cv и вновь построитьтеоретическую кривую обеспеченности.
Кривая обеспеченности стока, построенная в простых координатах, имеет большую кривизну в верхних и нижних частях. Это затрудняет пользование кривой и графическую экстраполяцию крайних участков кривой, представляющий наибольший интерес при гидрологических расчетах. Поэтому для построения кривой обеспеченности применяют специальную клетчатку вероятностей. Основное свойство клетчатки вероятностей состоит в том, что на ней кривая обеспеченности с коэффициентом асимметрии Cs=0 получает вид прямой. При других значениях Cs кривые обеспеченности, построенные на клетчатке вероятностей, имеют вид плавных линий, причем кривизна их увеличивается с увеличением коэффициента асимметрии.
На рисунке 10 приведена аналитическая и эмпирическая кривые обеспеченности годового стока на клетчатке вероятности с обычной вертикальной шкалой.
Для построения эмпирической кривой обеспеченности расчеты удобнее выполнять, в форме табл. 8.
Таблица 8
№ | год | ср. г.расх. | Qi в порядке | P% |
убывания | ||||
1 | 1932 | 2,51 | 3,26 | 1,58 |
2 | 1933 | 2,55 | 3,02 | 3,83 |
3 | 1934 | 2,60 | 3,01 | 6,08 |
4 | 1935 | 2,35 | 2,99 | 8,33 |
5 | 1936 | 2,12 | 2,98 | 10,59 |
6 | 1937 | 2,15 | 2,97 | 12,84 |
7 | 1938 | 1,58 | 2,88 | 15,09 |
8 | 1939 | 2,11 | 2,72 | 17,34 |
9 | 1940 | 2,37 | 2,67 | 19,59 |
10 | 1941 | 2,43 | 2,64 | 21,85 |
11 | 1942 | 3,26 | 2,60 | 24,10 |
12 | 1943 | 1,81 | 2,56 | 26,35 |
13 | 1944 | 1,80 | 2,56 | 28,60 |
14 | 1945 | 2,22 | 2,55 | 30,86 |
15 | 1946 | 2,45 | 2,51 | 33,11 |
16 | 1947 | 1,88 | 2,47 | 35,36 |
17 | 1948 | 2,15 | 2,46 | 37,61 |
18 | 1949 | 3,02 | 2,45 | 39,86 |
19 | 1950 | 2,46 | 2,43 | 42,12 |
20 | 1951 | 2,00 | 2,43 | 44,37 |
21 | 1952 | 2,43 | 2,37 | 46,62 |
22 | 1953 | 2,28 | 2,35 | 48,87 |
23 | 1954 | 2,29 | 2,35 | 51,13 |
24 | 1955 | 2,97 | 2,30 | 53,38 |
25 | 1956 | 2,98 | 2,30 | 55,63 |
26 | 1957 | 2,16 | 2,30 | 57,88 |
27 | 1958 | 2,35 | 2,29 | 60,14 |
28 | 1959 | 2,47 | 2,28 | 62,39 |
29 | 1960 | 2,08 | 2,26 | 64,64 |
30 | 1961 | 2,30 | 2,23 | 66,89 |
31 | 1962 | 2,99 | 2,22 | 69,14 |
32 | 1963 | 2,23 | 2,16 | 71,40 |
33 | 1964 | 2,56 | 2,16 | 73,65 |
34 | 1965 | 2,16 | 2,15 | 75,90 |
35 | 1966 | 3,01 | 2,15 | 78,15 |
36 | 1967 | 2,67 | 2,12 | 80,41 |
37 | 1968 | 2,30 | 2,11 | 82,66 |
38 | 1969 | 2,88 | 2,08 | 84,91 |
39 | 1970 | 2,56 | 2,00 | 87,16 |
40 | 1971 | 2,30 | 1,96 | 89,41 |
41 | 1972 | 2,72 | 1,88 | 91,67 |
42 | 1973 | 2,64 | 1,81 | 93,92 |
43 | 1974 | 1,96 | 1,80 | 96,17 |
44 | 1975 | 2,26 | 1,58 | 98,42 |
Для построения теоретической кривой обеспеченности необходимо определить величины расходов, имеющих обеспеченность Р = 0,01%, 0,1%, 1%, 5%, … 99,9% по формуле 25. Полученные значения удобнее свести в табл. 9