Смекни!
smekni.com

Анализ условий формирования и расчет основных статистических характеристик стока реки Кегеты (стр. 3 из 7)

,

где Нср – средняя высота водосбора, м; f1, f2, …fn – частные площади водосбора, заключенные между горизонталями, км2; Н1, Н2, …Нn – средние высоты между горизонталями, м; F – общая площадь водосбора, км2. Для определения Нср в случае водосбора р. Кегеты удобнее воспользоваться первым способом, поскольку вычисление частных площадей f между всеми горизонталями, как того требует второй способ, представляется затруднительным.

Гипсографическая кривая дает наглядное представление о распределении площади бассейна по высотным зонам. Для ее построения весь диапазон высот в бассейне разбивается на 8 высотных ступеней и измеряются площади, расположенные между горизонталями с отметками этих ступеней и линией водораздела. Чем больше амплитуда высоты в бассейне, тем большие интервалы высоты берутся для отдельных ступеней.

Наивысшей точкой бассейна Кегеты является точка с отметкой 4444 м, минимального значения высота достигает в районе створа – 1500 м, амплитуда составляет 2944 м. В соответствие с методикой, этот интервал следует разбить на 8 высотных ступеней. Полученные таким образом значения горизонталей послужили основой разбиения площади бассейна, представленного на рис. 7. Высотные отметки горизонталей и результаты вычисления площадей, заключенных между ними, приведены в табл. 3.

По данным измерений площадей и отметкам горизонталей строится график распределения площадей по высотным зонам, показывающий размеры площадей, лежащих между высотными отметками. Он имеет вид столбчатой диаграммы, по горизонтали откладываются площади, по вертикали – высотные отметки. Для Кегеты этот график представлен на рис. 8.

После того как график распределения площадей построен, строится кривая нарастания площадей по высотным зонам – гипсографическая кривая, которая может быть получена путем последовательного суммирования площадей, отложенных по оси абсцисс на предыдущем графике. Точки гипсографической кривой откладываются на нижних границах высотных интервалов и соединяются плавной линией. На графике под масштабом площадей наносится шкала процентов из расчета, что общая площадь бассейна равна 100%. Точке на кривой с абсциссой 50% и будет соответствовать высота на оси ординат, которую можно считать средней высотой водосбора. Гипсографическая кривая бассейна р. Кегеты построена на рис. 9

Таблица 3. Ведомость измерения площадей высотных зон бассейна р. Кегеты

Высотные отметки горизонталей, м Площадь высотной зоны, км2
От До
12345678 40003600320028002400200016001500 44444000360032002800240020001600 10,4172618,625243423

Геоморфологические коэффициенты

К геоморфологическим коэффициентам относятся коэффициент озерности, коэффициент заболоченности и коэффициент залесенности. Они рассчитываются соответственно как процентное отношение суммарной площади озер, болот и лесов, расположенных в бассейне некоторой реки, к площади водосбора этой реки. Например, коэффициент озерности определяется по формуле (9):

,

Насколько можно установит по карте на рис. 1, бассейн р. Кегеты содержит озеро. Леса не отображены на карте.

2.2 Климатические факторы стока

Осадки

Распределение осадков по поверхности суши зависит от удаления местности от океана, рельефа местности и растительного покрова. По мере удаления от океана количество постепенно уменьшается. В горных районах склоны, обращенные к влагоносным ветрам, получают больше осадков, чем противоположные. Влияние рельефа сказывается в том, что с повышением местности количество выпадающих осадков обычно увеличивается. Увеличение количества осадков с высотой обычно происходит до отметок 3000 – 3500 м над уровнем моря, а выше эта зависимость уменьшается или прекращается.

Опираясь на карты источника, можно отметить большую увлажненность бассейна Кегеты осадками ввиду благоприятных условий географического расположения. Среднегодовые суммы осадков здесь на большей части территории на высотах от 1300–1400 м до 2300–2500 м превышают 1000 мм. Выше и ниже этих пределов осадков выпадает меньше, и при подъеме по юго-западному склону Кыргызского хр. до высот 3500 – 3800 м их количество уменьшается до 600 мм.

Испарение

Процесс испарения состоит в том, что вода из жидкого или твердого состояния переходит в газообразное. К факторам, увеличивающим испарение, относятся повышение температуры и увеличение скорости ветра, усиливающее турбулентное перемешиванию масс воздуха, соприкасающихся с испаряющей поверхностью. Кроме того, на интенсивность испарения влияет влажность почвы, солнечная радиация, которые обуславливают жизнь растений и их рост, парциальное давление (упругость) водяного пара в воздухе и др.

Температура в долине р. Кегеты в среднем уменьшаются с высотой от +20 до +10 °С в июле и от -4 до -14 °С в январе. Средняя влажность в июле составляет 40 – 55%, а в январе – 55 – 60%. Среднегодовая испаряемость в бассейне Кегеты равномерно уменьшается от низовий к верховьям от 1200–1300 мм до 600 мм. В целом, бассейн Кегеты по классификации В. Кеппена и А.В. Вознесенского относится к бореальному типу климата с ясно выраженной зимой и летом и достаточным увлажнением, и лишь высокогорные участки Кыргызского хребта имеют холодный тундровый тип климата.

3. Сток и его распределение

3.1 Определение нормы годового стока и его статистических характеристик

Нормой годового стока Q0 называется среднее его значение за многолетний период такой продолжительности, при увеличении которой полученное среднее существенно не меняется, включающий несколько полных четных циклов колебаний водности реки при неизменных географических условиях и одинаковом уровне хозяйственной деятельности в бассейне реки. Норма годового стока, или средний многолетний сток, является основной и устойчивой характеристикой, определяющей общую водность рек и потенциальные водные ресурсы данного бассейна или района.

Согласно «Указаниям по определению расчетных гидрологических характеристик» (СН 435–72) /7,8,13/, продолжительность периода наблюдений считается достаточной для установления расчетных значений нормы годового стока, если рассматриваемый период репрезентативен и относительная средняя квадратическая ошибка многолетней величины eQ0 не превышает 5…10%, а коэффициент вариации (изменчивости) eсv– 10…15%.

Норма годового стока, как всякая средняя арифметическая величина статистического ряда, может быть определена по формуле:

, (17)

где QN- норма годового стока, Qi– годовые значения стока за длительный период (N лет).


Среднегодовой расход воды р. Кегаты за 1927–1975

год Qi, м3 Год Qi, м3 год Qi, м3
19271928192919301931193219331934193519361937193819391940194119421943194419451946 -----2.512.552.602.352.122.151.582.112.372.433.461.811.802.222.45 19471948194919501951195219531954195519561957195819591960196119621963196419651966 1.882.153.022.462.002.432.282.292.972.982.162.352.472.082.302.992.232.562.163.01 196719681969197019711972197319741975 2.672.302.883.562.302.722.641.962.26

Вследствие недостаточной длины рядов наблюдений за годовым стоком (как правило не превышают 60…80 лет, составляя в основном 20…40 лет) норма годового стока, определенная по (17) отличается от истинного среднего значения QN на величину σQn тогда:

QN=Q0n±σQn, (18)

где Q0n– средний годовой сток за ограниченный период наблюдений; σQn– средняя квадратическая ошибка n-летней средней.

Cогласно теории ошибок, величина σQn, на которую отличается среднее значение годового стока за n лет от истинной нормы QN за N лет при N®∞, равна


(19)

где σQ – среднее квадратическое отклонение единичных значений годового стока Qiот среднего за n лет.

Определяется σQ по формуле

. (20)

Для сравнения точности определения нормы стока рек различной водности пользуются относительным значением средней квадратической ошибки. Так, выражая σQ в процентах от Q0n получим среднюю, квадратическую ошибку нормы стока, вычисленную по ограниченному ряду n лет,

, (21)

где

– коэффициент вариации ряда годовых значений стока за n лет.

Коэффициент вариации CVхарактеризует колебания годовых значений стока относительно их средней величины. Он является безразмерной характеристикой изменчивости годового стока, удобной для сравнения нескольких рядов наблюдений, различающихся своими средними значениями. При выражении отдельных членов ряда в безразмерных модульных коэффициентах Ki коэффициент вариации определяется по формуле


. (22)

Поскольку в колебаниях годового стока наблюдается определенная цикличность, проявляющаяся в последовательной смене групп многоводных и маловодных лет, то среднеарифметическое из многолетнего ряда наблюдений считается нормой только в случае, если ряд состоит из полных циклов колебаний водности.