2. Вычисление n-й горизонтальной производной
В этом случае (рассматриваем произвольную по оси x)
Ф(u,v) = (iu)n. (3.82)
Следовательно,
|Ф(u,v)|2 = u2n = (-1)n(iu)2n. (3.83)
Аналогичный результат получим и при дифференцировании по направлению оси у. Из последних двух равенств видно, что для получения корреляционной функции аномалии n-й горизонтальной производной необходимо продифференцировать корреляционную функцию исходной аномалии по направлению соответствующей оси 2n раз и умножить полученный результат на (-1)n. Например, для оси x верно равенство
(3.84)где B(ξ, η) и Bn(ξ, η) - автокорреляционные функции исходной аномалии и аномалии n-й производной по направлению оси х.
3. Вычисление n-й вертикальной производной
Так как для данного случая
Ф(ρ) = (-ρ)n, (3.85)
то
|Ф(ρ)|2 = (-ρ)2n. (3.86)
Отсюда видно, что вывод такой же, как и в предыдущем случае, только результат не нужно умножать на (-1)n. На основании этого положения в двухмерном и трехмерном случаях для автокорреляционных функций получим
(3.87)где B(τ) и Bn(τ) - автокорреляционные функции исходной аномалии и аномалии n-й вертикальной производной (здесь учтено, что в выражение B(τ) глубина залегания аномального тела входит в виде 2h).
В двухмерном случае из-за равенства автокорреляционных функций аномалий горизонтальных и вертикальных производных следует, что
(3.88)Усреднение и применение вычислительных схем
При усреднении (например, по двум точкам, на отрезке профиля, по окружности, по площади круга) также верно равенство
|Ф(u,v)|2 = Ф2(u,v).
Поэтому во всех этих случаях для получения корреляционной функции усредненной соответствующим образом аномалии необходимо корреляционную функцию исходной аномалии усреднить дважды.
Вывод о применении трансформации дважды относится и к преобразованиям с помощью различных вычислительных схем, основанных на усреднении по точкам или по окружности. Полученные соотношения в двухмерном и трехмерном случаях позволяют определить автокорреляционные функции и энергетические спектры трансформированных аномалий через автокорреляционную функцию и энергетический спектр одной исходной аномалии, минуя процесс самой трансформации. Приведенными равенствами широко пользуются на практике (см., например, работы К.В. Гладкого, В.Н. Глазнева, В.Н. Луговен-ко и других исследователей).
Возьмём нормированную автокорреляционную функцию погрешностей наблюдений. Рассмотрим ёе поведение для радиуса корреляции погрешностей наблюдений r = Δx, для r > Δx.
1. Радиус корреляции погрешностей r = Δx.
Bн(t)=exp[-(t / d)2],
Рассматриваем для значений d = 1, 5, 10.
График изменения автокорреляционной функции при различных d
Bн(t)=exp[-t / d1],
Рассматриваем для значений d = 1, 5, 10.
График изменения автокорреляционной функции при различных d
2. Радиус корреляции погрешностей r > Δx.
Bн(t) = exp(-αt)cosβt; где α = 0,80 / r, β = π / 2r;
Рассматриваем для значений r = 1, 5, 10.
График изменения автокорреляционной функции при различных r
С помощью графиков можно судить о поведении значений автокорреляционной функции. Очевидно, что при малых d функции для аномалий более пологие. Видно, что при τ = 0 функции имеют все общую точку равную 1. Графики функций для выбранных тел имеют относительное сходство.
1. Серкеров С. А. Спектральный анализ гравитационных и магнитных аномалий. — М.: Недра, 2002.