Смекни!
smekni.com

Твердые кристаллы (стр. 3 из 7)

Итак, все кристаллы обладают тем свойством, что углы между соответственными гранями постоянны. Грани у отдельных кристаллов могут быть развиты по-разному: грани, наблюдающиеся на одних экземплярах, могут отсутствовать на других - но если мы будем измерять углы между соответственными гранями, то значения этих углов будут оставаться постоянными независимо от формы кристалла.

Однако, по мере совершенствования методики и повышения точности измерения кристаллов выяснилось, что закон постоянства углов оправдывается лишь приблизительно. В одном и том же кристалле углы между одинаковыми по типу гранями слегка отличаются друг от друга. У многих веществ отклонения двухгранных углов между соответственными гранями достигает 10 -20', а в некоторых случаях и градуса.

Грани реального кристалла никогда не представляют собой идеальных плоских поверхностей. Нередко они бывают покрыты ямками или бугорками роста, в некоторых случаях грани представляют собой кривые поверхности, например у кристаллов алмаза. Иногда замечаются на гранях плоские участки, положение которых слегка отклонено от плоскости самой грани, на которой они развиваются. Эти участки называются в кристаллографии вицинальными гранями , или просто вициналями. Вицинали могут занимать большую часть плоскости нормальной грани, а иногда даже полностью заменить последнюю. Иногда на гранях наблюдаются ступеньки имеющие форму пандуса. Таким образом можно говорить о скульптуре граней, являющейся причиной отклонения от равенства двугранных углов. Изучением различных наростов занимается раздел кристаллографии - Морфология внешней формы кристаллов.

Наблюдаются, конечно, и более закономерные изменения двугранных углов, например зависимость от температуры. В таблице 2 приведены значения углов между гранями кварца при разной температуре.

Таб.2

T, oC Угол T, oC Угол
-166021100200 128o11’54’’128o12’51”128o13’12”128o13’36”128o14’54” 300400500550575 128o16’12”128o17’54”128o20’12”128o22’00”128o23’18”

В заключении раздела о главном геометрическом законе кристаллографии необходимо сказать о случаях резкого изменения углов кристаллов., которое возникает при полиморфном превращении вещества ( образование данным веществом разные по симметрии и форме кристаллы), явлении, открытом позже формулировки закона постоянства углов. Одно и то же вещество при полиморфном превращении скачком меняет свои свойства. Например, переход ромбической серы в моноклинную сопровождается увеличением удельного объема на 0.014 сантиметра на грамм и термическим эффектом в 3.12 калорий на грамм. Еще резче меняет свои свойства кристаллический углерод при переходе алмаза в графит. Плотность алмаза 3.5, графита 2.2; твердость алмаза 10, графита 1 и т.д.

При полиморфном превращении наряду со скачкообразным изменением физических свойств, скачком меняется и внешняя форма кристаллов, при этом совокупность двугранных углов одной модификации может совсем не соответствовать совокупность двугранных углов другой.

Учитывая все вышесказанное, можно так сформулировать закон постоянства углов: «Во всех кристаллах, принадлежащих к одной полиморфной модификации данного вещества, при одинаковых условиях углы между соответствующими гранями (и ребрами) постоянны.»

Как определить вещество по форме его кристалла.

К концу XIX-XX века в науке накопилось множество данных о внешней форме и углах кристаллов Е. С. Федоров критически пересмотрел и суммировал весь фактический материал по измерениям кристаллов, накопленный к тому времени; произвел сам множество кристаллографических измерений ; обработал эти измерения новым, созданным им, оригинальным методом; сопоставил эти измерения с развитой им теорией строения кристаллов и, соединив воедино опыт и теорию создал кристаллохимический анализ.

На основе кристаллохимического анализа можно было определять состав вещества, исходя из внешней формы его кристаллов. По внешней форме кристалла этот анализ позволял получить первые схематические представления о внутреннем строении кристалла.

Кроме углов между гранями, Федоров принял во внимание еще и то, как развиваются грани природных кристаллов. Формы одного и того же вещества могут быть весьма разнообразными. При идеальных условия роста все грани кристалла развиваются свободно, но в реальных условия они чаще всего развиваются неодинаково. Природные кристаллы одного и того же минерала из разных месторождений могут оказаться совсем различными, вовсе не похожими друг на друга. Тем не менее, как указал ученый, некоторые грани кристалла все же наиболее характерны для данного вещества, они встречаются на разных кристаллах чаще всего – почти всегда.

В кристаллохимическом анализе соединены представления о внешней форме и о внутреннем строении кристаллов. Гениально предвычислив все законы симметрии структуры кристаллов задолго до того, как существование атомных решеток в кристаллах было доказано на опыте, Федоров считал несомненным, что внешние грани кристалла соответствуют его плоским сеткам, т. е. тем плоскостям кристаллических решеток, вдоль которых расположены частицы (атомы, ионы, молекулы), а наиболее развитые, чаще всего встречающиеся грани кристалла совпадают с теми плоскими сетками, на которых частицы расположены гуще всего.

Таким образом, по внешней форме кристалла можно судить о расположении частиц в его решетке. Расчетные методы Федорова и таблицы, составленные им и его учениками, позволяли по углам кристалла определить тип структуры вещества и его химический состав.

Кристаллохимический анализ Е.С. Федорова был значительно развит и предельно упрощен впоследствии его учеником, профессором А. К. Болдыревом. Было выпущено два тома таблиц, под названием «Определитель кристаллов», позволяющих определить химический состав вещества по углам между гранями кристаллов.

«В наши дни, однако, анализ кристаллов по их внешней форме в значительной мере вытеснен достижением ХХ века – рентгеноструктурным анализом. Этот метод, основывающийся на симметрии структуры кристаллов и на дифракции рентгеновских лучей в кристаллах, дает возможность определять кристаллическую структуру вещества независимо от того, какова его внешняя форма. Не нужно иметь многогранный кристалл, хватит и малой крупинки кристаллического вещества, что бы с помощью рентгеноструктурного анализа полностью определить симметрию его структуры»[2].

Атомная структура кристаллов.

Теперь пришло время углубится в рассмотрение атомной структуры кристаллов, о которой так часто упоминалось выше.

«Все найдено!»- воскликнул Рене Жюст Гаюи (1743-1822), заметив, что случайно выпавший из его рук большой кристалл кальцита раскололся на множество маленьких параллелепипедальных (ромбоэдрических) осколков (кальцит обладает хорошей спайностью - способностью раскалываться – по ромбаэдру). В этот именно момент в его уме зародилась новая теория строения кристаллов. В отличие от Кеплера, Гука и Ломоносовы, Гаюи предположил, что кристаллы построены не из мельчайших шариков, а из молекул параллелепипедальной формы и что предельно малые спайные осколки и являются этими самими молекулами. Иными словами, кристаллы представляют собой своеобразные кладки из молекулярных «кирпичиков» Несмотря на всю свою наивность с современной точки зрения эта теория сыграла в свое время большую историческую роль, дав толчок к зарождению теории решетчатого строения кристаллов.

Во всем мире вы не найдете ни одного атома или иона, ни одной молекулы, которые покоились бы: все они движутся, но движения эти различны.

«Кристаллы построены правильно, строго закономерно. И в них тоже атомы, ионы и молекулы не находятся в покое, но частицы не сталкиваются друг с другом, потому что все они расположены правильным строем и каждая может только колеблется около определенного положения. Ряды частиц в пространстве, подобны трехмерным решеткам из атомов, которые образуют кристаллическую структуру»[5].

Структура всех кристаллических веществ периодична и закономерна. Во всех кристаллах частицы выстраиваются симметричными правильными рядами, плоскими сетками, трехмерными решетками. В твердом кристаллическом веществе каждая частица движется “вольно”, колеблется, но только у своего места в строю. Строй частиц в кристаллическом веществе похож на пчелиные соты или на строительные леса: влево и вправо, вперед и назад, вверх и вниз тянутся ровные, правильные, бесконечные ряды частиц. Однако отделиться, выйти из такой решетки частицы твердого тела не могут, только если, например, нагреть кристалл так, чтобы он начал плавится.

Порядок, закономерность, периодичность, симметрия расположения атомов - вот что характерно для кристаллов. Во всех кристаллах, во все твердых веществах частицы расположены правильным, четким строем, выстроены симметричным, правильным повторяющимся узором. Пока есть этот порядок существует твердое тело, кристалл. Нарушен порядок, рассыпался строй частиц -это значит, что кристалл расплавился, превратился в жидкость или испарился, перейдя в пар.