si=1/ R i-1/ R0 (21)
Структурная схема и основные элементы прибора
В приборе использовался полупроводниковый сенсор RS286-620 производства RS-Components. По утверждению представителей фирмы чувствительный элемент представляет собой тонкопленочную композицию из оксидов палладия, легированных веществами, увеличивающими чувствительность сенсора к органическим соединениям.
На нагреватель сенсора подается управляемое процессором периодическое напряжение. (форма напряжения на нагревателе чувствительного элемента представлена на рис.1.). После перехода напряжения на нагревателе из низкого уровня в высокий температура сенсора начинает возрастать. .Нагреваясь под воздействием напряжения, сенсор меняет свое сопротивление. Сопротивление сенсора связано как с его температурой так и с составом окружающей сенсор газовой смеси. Зависимость сопротивления сенсора от температуры содержит информацию о составе окружающей сенсор газовой смеси. Одновременно с процессом прогрева сенсора происходит процесс измерения сопротивления чувствительного элемента. Процессор производит измерение сопротивления сенсора через равные промежутки времени. При таком построении процесса съема термограммы фактически снимается зависимость сопротивления сенсора не от температуры нагревателя, а от времени с начала прогрева сенсора. Поэтому для обеспечения повторяемости результатов измерений необходимо обеспечить одинаковые начальные условия (температуру сенсора перед началом прогрева, отсутствие адсорбированных на поверхности сенсора примесей и т.д.). Для уменьшения зависимости результатов измерений от внешних условий чувствительный элемент прибора работает непрерывно, а не только в процессе измерений. Сразу после включения питания прибора на нагреватель начинают подаваться прямоугольные импульсы с периодом 220 с. импульсы напряжения подаются в течении всего времени работы прибора. Зависимость сопротивления сенсора от времени снимается во время прогрева сенсора одним из импульсов напряжения ( первый импульс считается прогревочным и измерения в первые 220 с. работы прибора не проводятся ). Эта зависимость снимается при помощи АЦП и сохраняется в ОЗУ прибора. После того, как снятие зависимости завершено микропроцессор производит обработку результатов в соответствии с изложенным ниже алгоритмом. В качестве эталонных термограмм используются термограммы веществ с известными концентрациями, снятые в лабораторных условиях и прошитые в ПЗУ большой емкости. Для обеспечения достоверности результатов необходимо, чтобы эталонные термограммы были сняты на том же сенсоре. Эталонные термограммы представлены в виде показаний АЦП при проведении измерений на эталонных веществах, поэтому их обработка в приборе ничем не отличается от обработки результатов измерений.
Измерительная часть состоит из схемы управления нагревателем сенсора и АЦП для измерения сигнала с сенсора. Поскольку входной ток АЦП достаточно велик и непосредственное подключение сенсора к входу АЦП вызовет искажение результатов необходимо применение повторителя для разделения цепей сенсора и АЦП. В качестве повторителя используется операционный усилитель. Основным требованием к повторителю является высокое входное сопротивление. При разработке измерительной части в качестве микросхем АЦП и усилителя были выбраны микросхемы AD7896 и AD820 соответственно. При подборе элементной базы измерительной части прибора проводилась проверка линейности работы измерительной части, состоящей из АЦП AD7896 и различных типов ОУ. Лучшей линейностью среди проверенных наборов обладает набор с ОУ AD820. АЦП поддерживает последовательный протокол обмена данными, что позволило сократить размеры схемы и ограничить число интерфейсных соединений. Уровни выходных сигналов этой микросхемы совпадают со стандартными уровнями сигналов ТТЛ, что избавляет от применения согласующих цепей.
Схема управления нагревателем должна обеспечивать достаточный ток через нагреватель. Этот блок измерительной части представляет собой 2-х каскадную ключевую схему. Сигнал от микропроцессора открывает маломощный транзистор VT2, а ток, протекающий через него, открывает мощный транзистор VT3, управляющий нагревателем.
Информационный обмен измерительной части и микроконтроллера происходит следующим образом:
Микроконтроллер передает на схему управления нагревателем управляющий сигнал и включает нагреватель. Информационный обмен с АЦП, производящими измерения по мере роста температуры нагревателя, происходит после включения нагревателя. Происходит считывание информации с АЦП. Формат считываемых данных соответствует формату данных микросхемы AD7896.
Протоколы обслуживания информационного обмена сенсор-микроконтроллер.
Микросхема AD7896 представляет собой быстродействующий 12-ти разрядный АЦП. Сигналы управления передаются по линиям CS (“Начало преобразования”) и CLK (“тактовые импульсы”). При переходе сигнала “Начало преобразования” из высокого уровня в низкий АЦП начинает преобразование входного сигнала. Время преобразования не превышает 8 микросекунд. Во время преобразования сигнал “Ожидание” выставляется в высокий уровень. После завершения преобразования АЦП готов к передаче данных. Для прочтения бита данных на вход “тактовые импульсы” подается низкий логический уровень, который следует удержать не менее 40 нс. Затем на выходе микросхемы (Линия SDO) появляется бит данных. Для прочтения следующего бита на вход “тактовые импульсы” следует подать высокий логический уровень, который так же должен быть удержан не менее 40 нс. Затем процедура повторяется. Таким образом в тот момент, когда на входе “тактовые импульсы” присутствует уровень логической 1 на выходе выставлен соответствующий бит данных. Подробная временная диаграмма представлена на рис. 3.
Для обращения ко внешним устройствам используется дешифратор адреса D4. Дешифратор проверяет состояние шины A15 и если она находиться в высоком логическом уровне, то адрес А12-А14 трактуется как адрес внешнего устройства. При этом на соответствующее устройство (дисплей, ПЗУ данных, регистр страниц и т.д.) дешифратор подает сигнал “Выбор”.
Для хранения эталонных термограмм применяется ПЗУ большой емкости ( 512 Кбайт ) D7. Адресное пространство процессора позволяет непосредственно адресовать не более 64 Кбайт внешней памяти. С учетом особенностей построения прибора этот лимит снижается до 32 Кбайт. Таким образом необходима страничная адресация ПЗУ данных. ПЗУ Данных разбито на 64 страницы по 8 Кбайт каждая. Таким образом каждая страница содержит одну эталонную термограмму. Для переключения между страницами используется регистр страниц D3. Для прочтения данных из ПЗУ данных необходимо проделать следующие операции:
1. Произвести запись номера страницы в регистр страниц.
2. Произвести чтение ПЗУ данных на установленной в п 1 странице.
Для последующего чтения данных с той же страницы повторного обращения к регистру страниц не требуется.