При ионизации донорного атома, он отдает электрон в зону проводимости и заряжается положительно. При низких температурах большая часть донорной примеси не ионизована и уровень Ферми расположен между дном зоны проводимости и донорным уровнем. При повышении температуры число электронов, переходящих с донорного уровня в зону проводимости возрастает, соответственно возрастает и концентрация свободных электронов (область 1 на правой верхней диаграмме). При этом уровень Ферми приближается к донорному уровню (левая диаграмма). При некоторой температуре вся примесь оказывается ионизованной и концентрация электронов (возникших за счет ионизации доноров), перестает изменяться (область 2 на диаграмме). Это область истощения донорной примеси (уровень Ферми в этой области ниже донорного уровня). При дальнейшем увеличении температуры, наступает момент, когда концентрация электронов, возникающих при их возбуждении из валентной зоны в зону проводимости становится больше концентрации донорной примеси и зависимость концентрации электронов от температуры принимает такой же вид, что и в собственном полупроводнике (участок 3), при этом уровень Ферми находится вблизи середины запрещенной зоны.
Количество электронов, выброшенных в зону проводимости с уровня донорной примеси описывается соотношением
nd=Nd * (1+exp(-(Ed-F)/kT)) –1 (1)
Количество электронов, захваченных акцепторной примесью из валентной зоны описывается соотношением
na=Na * (1+exp(-(F-Ea)/kT)) –1 (2)
В этих формулах Na и Nd Эффективные плотности состояний атомов донорной и акцепторной примесей, а Ed и Ed их энергетические уровни.
Из формул (1) и (2) видно, что доля ионизированных атомов примеси зависит не только от температуры, но и от положения энергетического уровня примеси в запрещенной зоне. При фиксированной температуре ионизация примеси будет тем меньше, чем ближе ее энергетический уровень к центру заперщенной зоны.
Далее рассматривается задача с малыми концентрациями примесей. В качестве условия малости концентрации выдвигается условие, что эффективные плотности состояний каждой из примесей много меньше эффективных плотностей состояний в валентной зоне и зоне проводимости. Далее рассматриваем задачу с малыми концентрациями примесей. Количество носителей заряда в зоне проводимости полупроводника определяется как сумма носителей заряда, ионизированных с каждого из донорных уровней в отдельности. Таким образом
nd=SNdi * (1+exp(-(Edi-F)/kT)) –1 ( 3)
Далее концентрации «дырок» в валентной зоне. Можно записать аналогичное соотношение.
na=SNai * (1+exp(-(F-Eai)/kT)) –1 ( 4)
При записи выражений (3) и (4) не учтено влияние переброса носителей заряда из валентной зоны в зону проводимости. Однако можно показать, что этот вклад много меньше вклада от примесей.
Используя определение проводимости вещества j=sE , будем иметь выражение, связывающее проводимость полупроводника с концентрациями носителей заряда в нем.
Подставляя в (5) выражения для nd и na получаем выражение для s
s=e ( mdSNdi * (1+exp(-(Edi-F)/kT)) –1+ ma SNai * (1+exp(-(F-Eai)/kT)) –1)
s= (S e md Ndi * (1+exp(-(Edi-F)/kT)) –1+ S e ma Nai * (1+exp(-(F-Eai)/kT)) –1)
Обозначая
sdi =e md Ndi * (1+exp(-(Edi-F)/kT)) –1
sai =e ma Nai * (1+exp(-(F-Eai)/kT)) –1
Преобразуем выражение для s к виду
В последнем выражении величины sdi и sai являются проводимостями, обусловленными ионизацией i-ой донорной или акцепторной примеси (далее эти величины называются парциальными проводимостями ). Таким образом суммарная проводимость полупроводника рассчитывается как сумма парциальных проводимостей от каждой из примесей.
Зависимость количества адсорбированных молекул от температуры.
Ударяясь о поверхность твердого тела молекулы газа адсорбируются. Время адсорбции или пребывания молекул в адсорбированном состоянии зависит от теплоты адсорбции и описывается уравнением Френкеля
Где t0 -минимальное время пребывания молекулы в адсорбированном состоянии. По порядку величины t0 соответствует значению 10-13 с. Qa –теплота адсорбции, рассчитанная на моль газа.
Основные составляющие воздуха имеют теплоты адсорбции на различных поверхностях в пределах от 10 до 20 кДж/кмоль. Время их адсорбции при комнатной температуре составляет порядка 10-10 с
Для нахождения зависимости количества адсорбированных молекул от температуры воспользуемся условием постоянства степени покрытия (отношения площади адсорбированных молекул к площади поверхности адсорбирующего тела).
(8)Где Q степень покрытия поверхности. Из последнего уравнения следует.
Величина n определяется как скорость испарения газа с поверхности, покрытой мономолекулярным слоем.
Значение m определяется как количество ударившихся о поверхность молекул, помноженное на вероятность поглощения молекулы газа на поверхности Подставляя (12) и (11) в (10) и учитывая выражение для ta имеем Подставляя в (13) выражение для n = P / (kT) получаем окончательное выражение(14)
Для определения количества примесных носителей заряда в полупроводниковой пленке, адсорбировавшей примесь необходимо подставить в (3) и (4) выражения для количества атомов примесей, полученные из (14)
Предполагая независимость f от температуры получаем.
Nd=Q S0(15)
В последнем выражении A(P, S0) независящая от температуры и свойств полупроводника константа. Na –постоянная Авогадро. Из последнего выражения видно, что на количество электронов в зоне проводимости оказывают влияние два конкурирующих процесса – выброс электронов в зону проводимости, увеличивающийся с ростом температуры, и уменьшение количества примесных уровней с ростом температуры. В приложении приведены графики зависимости (15) как функции температуры для различных значений параметра (Ed-F).