Смекни!
smekni.com

Акустическая коагуляция аэрозолей (стр. 2 из 3)

На рисунке 4 показано распределение амплитуд колебаний на пятой гармонике дискового излучателя. Частота излучения диска равна 20 кГц.

Рис. 3. Распределение амплитуд колебаний дискового излучателя на первой гармонике

Рис. 4. Распределение амплитуд колебаний дискового излучателя на пятой гармонике

Одним из известных способов создания в воздушной среде акустических колебаний с уровнем звукового давления более 130140 дБ, при использовании пьезоэлектрических излучателей, является фокусировка (концентрирование) менее интенсивных колебаний на локализованном участке. Принцип работы такого излучателя показан на рисунке 5.

a – длина акустической волны в воздуш-

ной среде; b – волны изгибных колебаний в твердом теле

Рис. 5. Схематичное изображение, поясняющее принцип работы фазированного фокусирующего излучателя

У фокусирующего излучателя поверхность твердого тела (пластины) совершает изгибные колебания, причем распределение амплитуд колебательных смещений вдоль радиуса пластины имеет вид стоячих волн. Каждая точка колеблющейся поверхности излучает в воздушную среду акустическую волну. Если за счет формы пластины расположить «положительные» максимумы колебательных смещений на расстояниях от центра пластины равных [3]:

Y+ = naL + n2a2 , (2)

4

где n =0,2,4…, a – длина звуковой волны в воздухе, L – расстояние от центра пластины до фокуса, и «отрицательные» максимумы на расстояниях:

Y= naL + n2a2 , (3)

4

где n =1,3,5…, то волны, излучаемые каждой точкой пластины, будут приходить в фокус в одной фазе.

Уровень звукового давления в фокусе превышает 160 дБ, а вокруг фокуса образуются поверхности равных фаз, где уровень давления превышает 150 дБ.

Внешний вид излучателя, работающего по описанному принципу, показан на рисунке 6.

1 – диск; 2 – фазовыравнивающие канавки; 3 – колебательная система

Рис. 6. Фокусирующий пьезоэлектрический излучатель

Излучающая поверхность диска 1 является плоской, а на обратной стороне диска имеются кольцевые канавки 2, обеспечивающие необходимое распределение изгибных колебаний по поверхности диска, а выступы, расположенные между канавками являются ребрами жесткости. Возбуждение диска осуществляется полуволновой пьезоэлектрической системой, совершающей продольные колебания. Применение фокусирующего излучателя целесообразно в случае, источник распространения аэрозоля известен и имеется возможность подавления аэрозоля в момент зарождения.

Для осуществления акустической коагуляции аэрозолей (подавления заражения и загрязнения) на открытых пространствах (аэродромы, производственные помещения, места общественного пользования), представляют интерес излучатели, создающие в воздушной среде акустическую волну, близкую к плоской, способную распространяться на значительные расстояния. При центральном возбуждении плоского тонкого диска, радиус которого кратен половине длины изгибной волны в этом материале, распределение колебательных смещений вдоль поверхности диска будет иметь вид стоячих волн. При этом амплитуда колебаний точки поверхности диска, удаленной на расстояние r от его центра определяется выражением:

A(r) = A0 ⋅cos2p
k r  , (4)

R

где A0 – амплитуда колебаний в центре диска; k – целое число полуволн колебаний, укладывающихся на радиусе диска; R – радиус диска.

На рисунке 7 представлено распределение изгибных колебаний по поверхности плоского диска и излучение отдельных точек поверхности диска в воздух.

Рис. 7. Примерное распределение изгибных колебаний по поверхности плоского диска и

излучение отдельных точек поверхности дис-

ка в воздух

Из рисунка видно, что различные точки поверхности излучают колебания в противоположенных фазах, что приводит к тому, что на некотором расстоянии от диска происходит взаимная компенсация излучения. Для того чтобы исключить это, можно искусственно снизить амплитуду колебаний участков диска, излучающих колебания в одной из фаз, например в «отрицательной» фазе. Этого можно добиться, увеличив толщину диска в указанных участках. В результате получается диск ступенчато-переменного сечения, схема которого представлена на рисунке 8 (условно показан диск с полуволновой УЗКС).

Рис. 8. Диск ступенчато-переменного сечения с преимущественным излучением одной фазы колебаний

Здесь же показано распределение амплитуд изгибных колебаний по поверхности диска. Из распределения видно, что амплитуда колебаний «отрицательных» зон уменьшена по сравнению с амплитудой колебаний «положительных» зон. Следовательно, полной взаимной компенсации колебаний не происходит. Излучающие свойства такого дискового излучателя характеризуются его эффективной площадью. Эффективная площадь, это площадь гипотетического поршневого излучателя, который в дальней зоне создает такую же интенсивность излучения, что и диск, совершающий изгибные колебания.

Эффективная площадь определяется в соответствии с выражением:

1 R SЭФ =
∫2pr A(r)⋅dr , (5)

A0 0 где A(r) – амплитуда колебаний точек поверхности диска на расстоянии r – от его центра.

За счет выполнения на тыльной поверхности диска выступов, расположенных в зонах «отрицательной» фазы колебаний, амплитуда колебаний этих зон существенно уменьшена. Поэтому на долю зон «положительной» фазы колебаний приходится 70% общей мощности излучения, в то время как на долю зон «отрицательной» фазы колебаний приходится всего 30% общей мощности излучения.

Если высоту выступов, расположенных в зонах «отрицательных» фаз диска ступенчато-переменного сечения сделать равной половине длины волны, то излучение «положительных» и «отрицательных» зон будут уже не вычитаться, а складываться. При этом, фаза излучения всех точек поверхности выравнивается. Схема такого излучателя показана на рисунке 9.

Рис. 9. Схема излучателя с фазовыравнивающими элементами

Как следует из рисунка, выступы располагаются не на тыльной поверхности диска (как в случае с излучателем с преимущественным излучением одной фазы), а на фронтальной (излучающей). В связи с тем, что излучение «положительных» и «отрицательных» зон в такой конструкции уже не компенсируют, а дополняют друг друга, уменьшение амплитуды колебаний в местах расположения фазовыравнивающих выступов нежелательно.

В связи с этим, на тыльной поверхности диска, напротив фазовыравнивающих выступов расположены впадины, которые позволяют увеличить амплитуду утолщенных участков. Эффективная площадь излучения диска определяется выражением:

SЭФ ≈ 0,7S , (6)

гдеS – общая площадь излучающей по-

верхности.

Интенсивность колебаний, создаваемых таким излучателем диаметром 340 мм на расстоянии 3–4 м, составляет 147-152 дБ [4]. Таким образом, излучатель с фазовыравнивающими элементами способен обеспечить наилучшие характеристики акустического поля по сравнению с излучателем с преимущественным излучением одной фазы. На рисунке 10 показана конструкция излучателя, включающего в себя полуволновую одноэлементную УЗКС с полуволновым концентратором и излучающий диск, с преимущественным излучением одной фазы колебаний.

1 – излучающий диск; 2 – болт; 3 – дополнительный концентратор; 4 – основной концентратор; 5 – пьезоэлектрические элементы; 6 – задняя частотнопонижающая накладка; 7 – шпилька; 8 – кольцо акустической развязки; 9 – фланец корпуса; 10 – корпус; 11

– вентилятор

Рис. 10. Конструктивное исполнение излучателя ультразвуковой колебательной системы

Акустическая связь внутри ультразвуковой колебательной системы обеспечивается за счет того, что основной концентратор 4 и пьезоэлектрические элементы 5 зажаты между дополнительным концентратором 3 и задней частотнопонижающей накладкой 6 с силой, многократно превышающей величину знакопеременной силы, создаваемой пьезоэлектрическими элементами. Стягивающее усилие обеспечивается шпилькой 7. Акустическая связь дополнительного концентратора 3 и диска 1 обеспечивается за счет болта 2, ввернутого в резьбовое отверстие в дополнительном концентраторе. В корпусе колебательной системы закрепляется через кольцо акустической развязки 8, зажатое в зазоре между фланцем 9 и корпусом 10. Охлаждение пьезоэлементов осуществляется воздушным потоком от вентилятора 11. Предельная входная электрическая мощность такой конструкции составляет 350 Вт.