Смекни!
smekni.com

Корпоративные финансы (стр. 6 из 9)

2. Дивиденды возрастают с постоянным темпом прироста, тогда теоретическую стоимость акции можно определить по модели Гордона:

Vt =

, (Б.5)

где D –базовая величина дивиденда;

g – ежегодный темп прироста дивиденда;

r – требуемая (ожидаемая) норма доходности.

Дивиденды возрастают с изменяющимся темпом прироста, тогда в расчете теоретической стоимости пытаются разбить интервал прогнозирования на подинтервалы, каждый из которых характеризуется собственным темпом прироста.

В теории и практики оценки акций описана и получила широкое распространение ситуация, когда темпы прироста дивидендов в течение нескольких лет прогнозного периода меняются бессистемно, а начиная с k+1 темп прироста дивидендов становится постоянным. Считается, что такое развитие событий характерно для компаний, находящихся в стадии становления, либо уже зрелых компаний, осваивающих новые виды продукции или рынки сбыта. Наиболее общая постановка задачи в этом случае такова:


D
D
… D
D
D
D
D
… D

0 1 2 … k-1 k k+1 k+2 k+3 …

Продолжительность фазы непостоянного роста составляет «k» лет. Дивиденды в этот период по годам равны D

,D
…D
,D
.

D

- первый ожидаемый дивиденд фазы постоянного роста с темпом «g»

r – приемлемая норма доходности.

Значит, в первые «k» лет прогнозируется бессистемное изменение величины годового дивиденда, а начиная с момента k+1, его величина равномерно увеличивается:

Dk+1 = Dk(1+g), Dk+2 = D

(1+g) = D
(1+g)2
. . .

Тогда на основании формулы Гордона можно определить второе слагаемое формулы (Б.6), т.е. текущую стоимость акции на конец периода «k»:

Vtk =

=

Поскольку мы пытаемся сделать оценку на начало первого года, то значение Vtk нужно дисконтировать и тогда формула (Б.6), позволяющая рассчитать теоретическую стоимость акций на коней нулевого года может быть представлена:

Vt =

+
(Б.6)

Пример. В течение последующих четырех лет компания планирует выплачивать дивиденды соответственно 1,5 д.е., 2 д.е., 2,2 д.е и 2,6 д.е. на акцию. Ожидается, что в дальнейшем дивиденд будет увеличиваться равномерно темпом 4% в год. Рассчитать теоретическую стоимость акции, если рыночная норма доходности равна 12%.

Vt =

+
+
+
+
*
= 27,6 д.е.

Таким образом, в условиях эффективного равновесного рынка ценных бумаг акции данной компании должны продаваться приблизительно по цене 27,6 д.е.

Доходность финансовых активов: виды и оценка

При принятии решения о целесообразности приобретения акций или облигаций важными критериями наряду с абсолютными показателями (), являются показатели доходности, которые входят в число показателей эффективности. Доходностью является относительный показатель, рассчитываемый соотношением дохода (Д), генерируемого данным финансовым активом, и величины инвестиций в этот актив (CI); в общем виде может быть рассчитан следующим образом:

kt=

В зависимости от вида финансового актива в качестве дохода выступают:

- дивиденды; проценты;

- прирост капитальной стоимости.

В анализе речь может идти о двух видах доходности: фактической и ожидаемой, причем последняя представляет больший интерес для принятия решения о целесообразности приобретения тех или иных финансовых активов..

Приобретая финансовый актив (облигации или акции), инвестор рассчитывает на два вида потенциальных доходов:

- дивиденд;

- доход от прироста капитала.

Оба поступления не являются безусловными и могут состояться, как правило, в случае эффективной работы компании, чьи акции приобретены, хотя дивиденды предпочитают выплачивать и в неблагоприятные годы (финансовое сигнализирование).

P0 P1

D0 D1

t0 t1

где D0 – известный дивиденд;

D1 – ожидаемый дивиденд;

P0 – известная цена;

P1 – ожидаемая цена актива – целевой расчетный показатель.

Тогда общий доход, , генерируемый ценой бумагой за период t0 - t1, складывается из дохода от прироста капитала (доход от капитализации (P1 - P0) и дивидендов, а общая доходность kt определяется по формуле:

kt =

= kd + k

где kd – текущая доходность или дивидендная;

kc- капитализированная доходность.

В зависимости от вида финансового актива и абсолютных показателей, выбранных для его характеристики, можно исчислить несколько характеристик доходности. Поскольку их значения могут существенно различаться, нельзя говорить о некой абстрактной доходности, необходимо обязательно уточнять о чем идет речь и какой алгоритм используется для расчета.

1 Доходность облигации без права досрочного погашения (доходность к погашению YTM) определяется по формуле:

YTM =

,

где P

– номинальная цена облигации;

P

– текущая цена на момент оценки;

D – купонный доход;

m – число лет до погашения облигации.

Достоинством показателя доходности к погашению YTM, как и любого другого показателя эффективности, является возможность использования его в сравнительном анализе при выборе вариантов инвестирования в те или иные облигации.

Пример: Рассчитать доходность облигации номинальной стоимостью 1000 д.ед. с годовой купонной ставкой 9%, имеющей текущую рыночную цену 840 д.ед. Облигация будет приниматься к погашению через 8 лет.

YTM =

, или 12%

2 Доходность бессрочной привилегированной акции, а также обыкновенной с неизменным дивидендом, если инвестор не предполагает продавать ее в будущем, поэтому общая доходность совпадает с текущей дивидендной доходностью и определяется по формуле:

kt =

,