Какая сумма будет накоплена вкладчиком через три года, если первоначальный взнос составляет 400 тыс. тг., проценты начисляются ежегодно по ставке 10%?
Решение.
1) В Таблице 1на пересечении строки, соответствующей процентной ставке (10%), и колонке, соответствующей периоду начисления процентов (3 года), найдем фактор FM1 (10%,3) = 1,3310.
2) Рассчитаем сумму накопления: FV= 400 • 1,3310 = 532,4 тыс. тг.
Периодичность начисления процентов оказывает влияние на величину накопления. Начисление процентов может происходить раз в полугодие, квартал, месяц и т.д. При более частом накоплении необходимо скорректировать процентную ставку и число периодов начисления процентов: число лет, на протяжении которых происходит накопление, умножается на частоту накопления в течение года, а номинальная годовая ставка процента делится на частоту накопления.
Правило 72-х. Удвоение вложенной суммы происходит через число лет, определяемое как частное от деления числа 72 на годовую номинальную ставку процента.
При заключении финансовых соглашений часто приходится решать задачу, обратную задаче нахождения наращенной суммы. В этом случае пользуются схемой №2.
t t … t Рисунок – Определение текущей стоимости разового платежа
Текущая стоимость будущего капитала – очень важное (краеугольное) понятие, используемое при оценке стоимости приносящего доход имущества. Оно используется при оценке текущей стоимости будущего единовременного дохода – ценной бумаги или будущей продажи объекта недвижимости при оценке проектов.
Процесс пересчета будущей стоимости капитала в настоящую носит название ДИСКОНТИРОВАНИЯ, а ставка, по которой производится дисконтирование – ставки дисконта. Процессы дисконтирования и наращения (аккумулирования) являются взаимообратными процессами.
Основные формулы операции дисконтирования получаем из выше рассмотренных формул наращения. Например, формулу определения текущей стоимости в применении к ставке сложного ссудного процента определим из формулы (1.3):
(2.3) (2.3.1)где
FM2(r,n) =
- фактор текущей стоимости будущего капитала, коэффициент дисконтирования для сложных ставок ссудного процента, который показывает, во сколько раз текущая (современная) сумма меньше наращенной (будущей) стоимости суммы. Табличные значения приведены в Таблице 2 Приложения.
Пример.
Вам подарили ценную бумагу, в которой написано, что через 10 лет Вы получите 100 000 тенге. Сколько стоит эта бумага сегодня при условии, что справедливая годовая стоимость денег на рынке капитала составляет 10%?
Решение.
Чтобы решить эту задачу необходимо пересчитать будущие 100 000 тенге в сегодняшние деньги по формуле 2.3.1.
1. В Таблице 2 на пересечении строки, соответствующей процентной ставке 10%, и колонки, соответствующей периоду дисконтирования (10 лет), находим фактор текущей стоимости будущего капитала FM2(10%,10) = 0,386
2. Находим текущую стоимость ценной бумаги:
PV = 100 000
0,386 = 38 600тг.Если стоимость денег будет равна 20%, текущая стоимость этой ценной бумаги будет равна 16 200тг.
При учете векселей используется формула (2.2.1), являющаяся обратной по отношению к формуле (1.2.1). В ней t - это число дней, которые остались до конечного срока учета векселя. Определяя продолжительность финансовой операции, принято считать за один день выдачи и день погашения ссуды.
, (2.2.1)Эффективная годовая процентная ставка. Различные виды финансовых контрактов могут предопределять различные схемы начисления процентов. Как правило, в контрактах у нас и в США оговаривается номинальная процентная ставка обычно годовая, которая не отражает реальной эффективности сделки и не может быть использована для сопоставлений. Эффективная годовая процентная ставка (re) обеспечивает переход от текущей стоимости к будущей при заданных значениях этих показателей и однократном начислении процентов. Эффективная годовая процентная ставка определяется как:
re = (1+
)m – 1где: m – число начислений в год.
Эффективная ставка зависит от номинальных и количественных внутригодовых начислений, причем с ростом m она увеличивается
Пример.
Предприятие может получать ссуду:
а) на условиях ежемесячных начислений процентов из расчета 26% годовых;
б) на условиях полугодового начисления процентов из расчета 27% годовых.
Определим эффективную процентную ставку: а) re = (1+
)12 – 1 = 0,2933=29,3%б) re = (1+
)2 – 1 = 0,2882=28,8%Таким образом, вариант (б) является более предпочтительным для предприятия; причем решение не зависит от величины кредита, поскольку критерием является относительный показатель – эффективная ставка, которая зависит лишь от номинальной ставки процента и количества начислений в год.
Учет инфляционного обесценивания денег в принятии финансовых решений
Учет инфляционного обесценивания денег возможен двумя вариантами:
- когда корректируется сама процентная ставка на темп инфляции (а), она может быть определена по формуле Фишера: ra = r + a + r
,где – r – процентная ставка;
a – темп инфляции.
- когда все вышерассмотренные формулы определения текущей дисконтированной стоимости умножаются на индекс инфляции: Iu = (1+a)
Рекомендуется индекс инфляции за период в n лет определить по формуле сложных процентов:
Iu = (1+a)na * (1+nb*a),
где na – целое число лет;
nb – оставшаяся не целая часть года.
АНАЛИЗ ДЕНЕЖНЫХ ПОТОКОВ. КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ПОСТОЯННЫХ ДИСКРЕТНЫХ ФИНАНСОВЫХ РЕНТ (АННУИТЕТОВ)
Контракты, сделки, коммерческие и производственно-хозяйственные операции часто предусматривают не отдельные, разовые платежи, а множество распределенных во времени выплат и поступлений денежных средств. Последовательный ряд выплат и поступлений называется потоком платежей:
· серия доходов и расходов предприятия по периодам;
· денежный поток, генерируемый в течение ряда периодов в результате реализации какого-либо проекта;
· взносы в погашение различных видов долгосрочных задолженностей;
Поток платежей, все члены которого однонаправленные равные величины, а временные интервалы между двумя последовательными платежами постоянны, называют финансовой рентой или аннуитетом.
Аннуитет может быть исходящим денежным потоком по отношению к инвестору (например, осуществление периодических равных платежей) или входящим денежным потоком (например, поступление арендной платы, которая обычно устанавливается одинаковой фиксированной суммой).
Представление последовательности платежей в виде финансовой ренты существенно упрощает количественный анализ, в частности при оценке недвижимости, и дает возможность использовать набор стандартных формул и табличные значения ряда коэффициентов, содержащихся в них.
В практике применяются разнообразные по условиям формирования ренты:
Таблица 2.1.1 – Признаки классификации и виды ренты
Финансовая рента описывается следующими основными параметрами:
· член ренты «PMT» - величина каждого отдельного платежа k-го периода;
· срок ренты – это время, измеренное от начала финансовой ренты до конца последнего ее периода;
· период ренты - временной интервал между двумя платежами;