Гидравлика (часть 1)
1. Введение.
Механика материальной точки и механика твердого тела - это предмет изучения теоретической механики. Наряду с твердыми телами в природе существуют жидкости и газы. Законы механического движения жидкостей изучает гидромеханика. В гидромеханике, как и в механике твердых тел, выделяют кинематику жидкости, гидростатику и гидромеханику.
Кинематика жидкости является разделом гидромеханики, в котором движение изучается вне зависимо от действующих сил; в кинематике устанавливается связь между геометрическими характеристиками движения и временем.
Гидростатика изучает законы равновесия (покоя) жидкости.
Гидродинамика изучает законы движения жидкости.
В зависимости от теоретической или прикладной направленности употребляют наименования теоретическая или прикладная гидромеханика.
2. Жидкости и их свойства.
Материальные тела могут находится в трех агрегатных состояниях: твердом, жидком и газообразном. Каждое из этих состояний характеризуется специфическими свойствами, которые определяются особенностями их молекулярной структуры, непосредственно связанной с силами взаимодействия молекул. Этими силами являются силы притяжения и отталкивания, действующие одновременно и зависящие от расстояния между частицами.
На примере двух изолированных молекул (рис. 1) на расстоянии
сила взаимодействия равна нулю, то есть силы отталкивания уравновешивают силы притяжения. При результирующей силой является сила притяжения, которая растет по абсолютной величине, достигая максимума при , а затем уменьшается. При – силы отталкивания. Молекула в поле этих сил обладает потенциальной энергией , которая связана с силой f(r) дифференциальным соотношениемdE=-f(r)dr(1)
В точке
, , достигает экстремума (минимума). В твердых (кристаллических) телах молекулы располагаются на расстоянии , где потенциальная энергия минимальна, образуя кристаллическую решетку. Тепловое движение – колебание атомов в узлах решетки. Средняя кинетическая энергия теплового движения - kT , она много меньше энергии связи молекулы в узле решетки, т. е. (2)Отсюда – устойчивость сохранения объема и формы твердого тела.
В газе межмолекулярное расстояние
, что соответствует слабым силам притяжения и малой потенциальной энергии. Тепловое движение доминирует над силами притяжения (3)Молекулы практически свободны. Свободное беспорядочное движение молекул газа обуславливает его расширение во все стороны, поэтому газ не имеет определенного объема и собственной формы, а занимает объем и принимает форму сосуда, в котором он находится.
Жидкости по молекулярному строению занимают промежуточное положение между кристаллическим твердым телом и газом
(4)Поэтому они обладают плотностью близкой к твердому телу, устойчиво сохраняют величину занимаемого ими объема, но не держат форму.
Сложность молекулярного строения жидкости затрудняет получение теоретическим путем достаточно общих связей между молекулярными характеристиками и наблюдаемыми свойст
Основными параметрами, характеризующими термодинамическое состояние жидкости, являются температура Т, давление р и плотность ρ.
Связь между плотностью, температурой и давлением устанавливается уравнением состояния, которое для реальных жидкостей и газов выводится в кинетической теории. Однако ввиду сложности общего уравнения состояния и затруднительности определения входящих в него констант, для качественного анализа свойств этих сред пользуются приближенными теоретическими или эмпирическими уравнениями.
Другой термодинамической характеристикой жидкости является сжимаемость.
Количественно сжимаемость оценивается изотермическим коэффициентом сжимаемости:
, (5)где
– удельный объем, . Жидкости, в отличие от газов, обладают малой сжимаемостью. Коэффициент сжимаемости большинства жидкостей лежит в пределах (Н/м2)-1. Для всех жидкостей он уменьшается с возрастанием давления и возрастает с повышением температуры.Объем жидкостей и газов изменяется не только при изменении давления, но и при изменении температуры. Как правило, жидкости и газы расширяются с повышением температуры, а плотность их при этом уменьшается. Исключение составляет вода, плотность которой возрастает при повышении температуры от 0 до 4 °С и достигает максимума при 4 °С. Такая аномалия объясняется особенностями молекулярного строения воды.
Количественно изменение объема при изменении температуры и постоянном давлении оценивается коэффициентом теплового объемного расширения
. (6)У жидкостей этот коэффициент зависит от температуры и давления, возрастая с повышением первой и уменьшаясь с увеличением второго.
Молекулярные движения в жидкостях и газах обусловливают сопротивление этих сред сдвигающим усилиям.
В рассматриваемом случае распределение скоростей линейное. Вследствие действия межмолекулярных связей между движущимися слоями жидкости возникают силы вязкости или внутреннего трения. Ньютон указал на те параметры, от которых зависит величина этой силы
. Для рассматриваемого слоистого движения – касательное напряжение (7)где μ – динамический коэффициент вязкости; S – площадь соприкосновения слоев;
– градиент скорости, являющийся показателем интенсивности изменения величины скорости по нормали к ее направлению.Динамический коэффициент вязкости μ является основной количественной характеристикой вязкости жидкостей и газов.
Наряду с динамическим коэффициентом вязкости в гидрогазодинамике широко используют кинематический коэффициент вязкости ν, определяемый соотношением
, (8)где
– плотность жидкости.Единицей измерения кинематического коэффициента вязкости служит м2/с.
3. Гипотеза сплошности среды.
В гидромеханике рассматриваются макроскопические движения жидкостей и газов, а также силовое взаимодействие этих сред с твердыми телами. При этом, как правило, размеры рассматриваемых объемов жидкостей, газов и твердых тел оказываются несопоставимо большими по сравнению с размерами молекул и межмолекулярными расстояниями. Это естественно, поскольку межмолекулярные расстояния в жидкостях составляют всего
см.Указанные обстоятельства позволяют ввести гипотезу сплошности изучаемой среды и заменить реальные дискретные объекты упрощенными моделями, представляющими собой материальный континуум, т. е. материальную среду, масса которой непрерывно распределена по объему. Такая идеализация упрощает реальную дискретную систему и позволяет использовать для ее описания хорошо разработанный математический аппарат исчисления бесконечно малых и теорию непрерывных функций.
Параметры, характеризующие термодинамическое состояние, покой или. движение среды, считаются при этом непрерывно изменяющимися по всему объему, занятому средой, кроме, быть может, отдельных точек, линий или поверхностей, где могут существовать разрывы.