Абсолютная скорость движения жидкости равна геометрической сумме переносной (окружной) и относительной скоростей (параллелограмм скоростей на рис. 48)
Следует заметить, что окружная скорость
Радиальная составляющая абсолютной скорости на ободе рабочего колеса равна
а окружная составляющая
где
Индексы «1» и «2» приняты для обозначения величин соответственно на входе в рабочее колесо и на выходе из него.
Окружная скорость рабочего колеса на выходе
где
Радиальную составляющую абсолютной скорости можно определить исходя из уравнения неразрывности потока
где
Аналогично можно определить величины абсолютной скорости, окружной скорости, угол между направлением относительной скорости и касательной на входе в рабочее колесо. Абсолютная скорость на входе зависит от конструктивных особенностей рабочего колеса; для большинства насосов угол входа при оптимальном режиме назначается равным 90° с таким расчетом, чтобы избежать гидравлического удара; тогда окружная скорость на входе
Коэффициент стеснения струи на входе по лабораторным исследованиям можно принять для малых насосов равным 0,75, для больших – 0,83.
В целях предотвращения гидравлического удара при поступлении жидкости на рабочее колесо необходимо, чтобы скорость ее не изменялась ни по величине, ни по направлению, т. е. направление относительной скорости при входе должно совпадать с направлением изгиба тела лопатки. Практика и опыт показывают, что при небольшом отклонении угла до 7-8° поток от лопаток не отрывается и поэтому гидравлические потери на удар можно принимать равными нулю. А это позволяет лопатки рабочего колеса у входа выполнять несколько круче, чем из условия безударного входа. Кроме того, входную кромку лопаток округляют.
После рассмотрения предварительных данных можно перейти к выводу основного уравнения центробежного насоса.
Выше было принято, что рабочее колесо имеет бесконечно большое число лопаток, и работа происходит без гидравлических потерь; это позволяет считать, что весь поток в колесе состоит из одинаковых элементарных струек, имеющих форму межлопаточного пространства колеса, и что скорости во всех точках цилиндрической поверхности данного радиуса одинаковы.
|
где
Используем уравнение моментов количества движения, которое для установившегося потока можно сформулировать так: изменение момента количества движения массы жидкости, протекающей в единицу времени при переходе от одного сечения к другому, равно моменту внешних сил, приложенных к потоку между этими сечениями. Относя положение к центробежному насосу, можно отметить, что внешние силы прикладываются к потоку под действием лопаток рабочего колеса. За 1 сек через каналы рабочего колеса протекает объем жидкости, численно равный перекачиваемому секундному расходу
Момент количества движения потока при радиусе
Здесь
Соответственно, момент количества движения потока у выхода из колеса при радиусе
Таким образом, изменение момента количества движения жидкости, протекающей через колесо за 1 сек, равно
Согласно рис. 49
Подставляя эти значения в предыдущее выражение, имеем
Умножая обе части уравнения на угловую скорость
где
Поток с расходом
Следовательно, можно записать
Учитывая, что
Поделим обе части уравнения на
Так как
Тангенциальная проекция абсолютной скорости