Смекни!
smekni.com

Гидравлика 2 (стр. 16 из 21)

Величину

обозначают через
и называют коэффициентом расхода.

Таким образом, расход жидкости, вытекающей через отверстие, определяют по формуле

. (130)

При точных измерениях размеров сжатого сечения струи установлено, что при совершенном сжатии струи

. В этом случае
. В общем же случае коэффициент расхода
зависит от условий сжатия.

При истечении не в газовую среду, а в смежный резервуар с той же жидкостью (что принято называть истечением «под уровень»), т. е. когда отверстие затоплено с обеих сторон, в качестве геометрического напора Н принимают разность уровней жидкости в резервуарах. Числовые значения коэффициентов

,
и
остаются при этом практически теми же.

В случае круглого отверстия, расположенного на значительном расстоянии от стенок, струя сжимается со всех сторон одинаково, и в сжатом сечении имеет также форму круга; при этом сжатое сечение находится от кромок отверстия на расстоянии около половины диаметра отверстия –

. Величина коэффициента сжатия зависит от относительных размеров отверстия и от положения его относительно стенок резервуара и поверхности жидкости.

В зависимости от расположения отверстия различают следующие виды сжатия (рис. 40):

1) полное сжатие со всех сторон (отверстия 1 и 2);

2)неполное, когда сжатия нет с одной или нескольких сторон (отверстия 3, 4и 5).

Полное сжатие подразделяют на:

а) совершенное, когда

и
(отверстие 1);

б) несовершенное, когда

и
(отверстие 2).

Форма сечения струи жидкости при истечении претерпевает изменения.

Эти изменения называются инверсией. Инверсия происходит вследствие того, что скорости подхода к отверстию в разных точках его периметра различны и вследствие сил поверхностного натяжения. На рис. 41 показано изменение формы струи при истечении через квадратное отверстие по мере удаления от резервуара.

При несовершенном сжатии коэффициент расхода

вычисляют по формулам:

для круглых отверстий

(131)

для прямоугольных отверстий

(132)

где

– значение коэффициента расхода при совершенном сжатии;
и
– поправочные коэффициенты, зависящие от отношения площади сечения отверстий
к площади сечения сосуда
. Значения этих коэффициентов принимают по таблице:

Значение величин

и
при несовершенном сжатии

0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00
0,014 0,034 0,059 0,092 0,134 0,189 0,26 0,351 0,471 0,631
0,019 0,042 0,071 0,107 0,152 0,208 0,278 0,365 0,473 0,608

При неполном сжатии коэффициент расхода вычисляют по уравнениям:

для круглых отверстий

; (133)

для прямоугольных отверстий

, (134)

где

– коэффициент расхода при полном сжатии;
–часть периметра, на котором нет сжатия; Р – полный периметр отверстия.

При расчете больших отверстий значения коэффициентов расхода, рекомендованных Н. Н. Павловским, приведены в таблице:

Значения коэффициентов расхода для больших отверстий

Виды отверстий и характер сжатия струи коэффициент расхода
Большие отверстия с несовершенным, но всесторонним сжатием ........................................................................................................................ 0,70
Большие отверстия с умеренным боковым сжатием, без сжатия по дну ........................................................................................................................ 0,80
Средние отверстия (шириной до 2 м) с весьма слабым боковым сжатием, без сжатия по дну ………. 0,90
Большие отверстия (шириной 5-6 м) с весьма слабым боковым сжатием, без сжатия по дну ………… 0,95

3.3 Истечение жидкости через отверстия в тонкой стенке при переменном уровне

Истечение жидкости при переменном уровне встречается пр;: опорожнении и наполнении резервуаров, цистерн, шлюзовых камер, бассейнов и других емкостей. Обычно в этом случае необходимо определить время опорожнения или наполнения емкости.

Рассмотрим случай опорожнения резервуара через донное отверстие в атмосферу (рис. 42). Пусть резервуар призматического сечения и имеет площадь

. Очевидно, движение жидкости будет неустановившимся, так как уровень е течением времени опускается, что вызывает постоянное уменьшение расхода.

Выберем какой-то момент времени, в который уровень жидкости в резервуаре будет у. За бесконечно малый промежуток времени dtуровень жидкости уменьшится на величину dy(за этот промежуток времени движение можно считать установившимся). За что время вытечет объем жидкости, равный

, (135)

или

. (136)

Выражая тот же объем жидкости через размеры резервуара, имеем

. (137)

Знак минус поставлен потому, что dyвеличина отрицательная (снижение уровня), а объем должен быть величиной положительной.

Приравнивая правые части уравнений (136) и (137), получим

,

откуда

. (138)

Интегрируя полученное выражение, найдем время истечения

, (139)

или, вынося постоянные величины за знак интеграла,

,

.

Итак, время понижения уровня от

до

. (140)

Время полного опорожнения, т. е. если

равно

. (141)

Рассмотрим случай истечения под уровень (рис. 43). Пусть разность уравнений жидкости в резервуарах равна у, площади поперечного сечения резервуаров соответственно

и
.