Лженаука обычно апеллирует к необходимости научных дискуссий и отстаивает право на фантазию.
Да, критика и самокритика необходимы в науке - это тривиально. Но это вовсе не означает, что любое научное положение дискуссионно, что научная истина рождается обязательно в споре. Она рождается в результате серьезной работы.
Твердо установленные, проверенные опытом и теоретически непротиворечивые положения не должны быть предметом дискуссии. Не нужно дискутировать по поводу справедливости второго начала термодинамики, нет смысла оспаривать периодический закон или закон ненаследования приобретенных признаков.
Напротив, дискуссия, спор чрезвычайно полезны, когда речь идет о еще неразрешенных вопросах. Нельзя сегодня спорить о специальной теории относительности Эйнштейна это незыблемое достояние науки. Но теория тяготения существует в нескольких вариантах, приводящих к различным значениям физических параметров. Надо думать, что правильным окажется лишь один. Суть спора состоит в нахождении безупречной теоретической аргументации и в экспериментальной проверке следствий теории. Научный спор не может быть словесным.
Тривиально и утверждение о необходимости фантазии в творческой научной работе. Да, формула бензола родилась в мозгу Кекуле из фантастического сновидения. Мощная фантазия Ньютона позволила ему представить, что Луна падает на Землю, как яблоко с ветви дерева. Число фантастических идей у настоящего ученого, вероятно, тем больше, чем он талантливее. Но лишь немногие из этих идей получают теоретическое и экспериментальное подтверждение и становятся достоянием науки. Темпераменты ученых различны - одни публикуют лишь абсолютно законченные и проверенные работы, другие не боятся высказать в печати или с кафедры идеи, не лишенные фантастичности. Но истинный ученый всегда понимает, что в его словах есть только фантазия, а что стало уже наукой.
Крупный биохимик Альберт Сент-Дьердьи написал "Биоэнергетику" (русское издание М., 1960). Основная идея этой книги состояла в том, что важнейшие биологические процессы связаны с миграцией квантов энергии по молекулам белков и воды. Но в следующей книге "Введение в субмолекулярную биологию" (М., 1964) Сент-Дьердьи сказал: "Эта небольшая книга представляет собой новое воплощение моей "Биоэнергетики", которая вряд ли была чем-либо большим, чем фантазия". Сент-Дьердьи здесь совершенно прав. Кстати, и вторая его книга гипотетична и фантастична - биология начинается на молекулярном уровне, а субмолекулярной биологии не существует, Фантастические идеи и гипотезы имеют громадное значение в науке. Они выражают определенные этапы творчества, они указывают пути научного поиска, но сами по себе они еще не наука.
Наука - трудное дело. Научный поиск очень часто ведет в тупик, и приходится возвращаться назад и заново распутывать нить Ариадны. Но без поиска, без фантазии, без проб и ошибок науки нет и быть не может.
Вместо того чтобы внимательно отнестись к критике и пересмотреть свои взгляды, лжеученый заявляет своим научным противникам примерно следующее: "Я предлагаю новое в науке. Вы же претендуете на знание окончательной истины. Вы игнорируете развитие науки. Завтра все увидят, что я прав, а вы окажетесь в незавидном положении ретроградов и обскурантов. Я Моцарт, а вы - Сальери. И единственное, на что я претендую, - равноправный спор, ибо истина рождается в споре. Поэтому моя работа должна быть опубликована. И чем вы лучше, чем профессор X., который меня поддерживает?"
Да, бывали случаи в истории науки, когда первоклассные открытия не получали признания крупных ученых. Академик М.В. Остроградский отверг геометрию Лобачевского, ничего в ней не поняв, а крупный химик Адольф Кольбе издевался над работой Вант-Гоффа "О расположении атомов в пространстве". Сейчас такие случаи становятся все более редкими, ибо научные методы развиты всесторонне и наука делается коллективно. Что же касается равноправного спора, то здесь лжеученый, как правило, просто лжет. Он отказывается от предлагаемых ему совместных контрольных опытов или расчетов. Он настаивает на своих ошибках и обращается за поддержкой к людям, не имеющим прямого отношения к предмету его исследований.
Кто же поддерживает лженауку? Этих людей легко классифицировать.
Другие лжеученые, в какой бы области они ни подвизались. Автор лженаучной работы по биологической термодинамике находит поддержку у лжеученых, занимающихся телекинезом или опровержением генетики и молекулярной биологии. Лжеученые удивительно быстро находят друг друга и объединяются. Это понятно - возникает солидарность непризнанных гениев.
Далекие от науки родные и друзья лжеученого. Это не требует примеров и объяснений.
Недостаточно сведущие, но падкие до сенсаций журналисты. Лженаука претендует на многое, она звучит громко и обычно представляется гораздо более эффектной, чем наука истинная. Пропагандировать лженауку легче, чем серьезные научные труды.
Деловые люди, мало знакомые с наукой, но готовые поверить в чрезвычайную практическую ценность лженаучного открытия, - лжеученые очень часто спекулируют на практической пользе и добиваются поддержки своей деятельности. Здесь уместно привести слова К.А. Тимирязева из его ранней статьи о Пастере:
"...критериумом истинной науки является не та внешность узкой ближайшей пользы, которой именно успешнее всего прикрываются адепты псевдонауки, без труда добивающиеся для своих пародий признания их практической важности и даже государственной полезности".
Лженаука приобретает особые возможности, если она возникает в специфических условиях выполнения работ, не предназначенных для публикации. Здесь необходим особенно тщательный анализ выдвигаемых претензий. Вспомним "своего человека в Гаване" из романа Грэма Грина, морочившего английскую разведку чертежами мнимого военного изобретения.
Иногда встречаются люди, не отягощенные чрезмерными знаниями в области естественных наук, и среди философов. Такие люди нежно любят лженауку, в особенности если она спекулирует на идеологических проблемах. К счастью, сейчас это становится все более редким явлением.
Иногда приходится слышать такие слова: "Да, конечно, в этой работе многое не доказано, но новаторство автора не может не импонировать". Обсуждать заявления такого рода нет смысла: если человек говорит, что дважды два пять, это никому импонировать не должно, хотя, конечно, может быть названо новаторством.
Из всего сказанного выше можно заключить, что лженаука - социальное явление. Благодаря грандиозному развитию науки и ее громадной роли в современной жизни появление некоторого количества лженаучных работ, к сожалению, неизбежно.
Не будем касаться хорошо известных направлений лженауки - псевдобиологии, боровшейся с научной генетикой, или парапсихологии, занимающейся телепатией у людей или мышей (см., например, "Химия и жизнь" 1975, № 1). Остановимся на нескольких примерах, более близких читателям журнала.
Воде посвящено множество лженаучных работ. Это можно понять, так как вода есть жидкость с особыми свойствами и ее значение для жизни, для науки и техники нельзя преувеличить.
В разное время появлялись и широко рекламировались новые виды воды, в частности следующие:
1. "Структурированная вода" в живых системах.
2. Вода, "помнящая о своем прошлом".
3. "Магнитная" вода.
4. "Полимерная" вода.
Разберемся в этих веществах по порядку.
1. Лженаучные представления об особой структуре воды в биологических системах широко распространены. При этом обсуждается не вода, входящая в гидратные оболочки молекул белков и нуклеиновых кислот, но вода в целом, находящаяся в клетках и тканях растения или животного. Вместо того чтобы изучать изменение состояния биополимеров и надмолекулярных структур, например биологических мембран в развивающемся растении, изучают мнимые изменения структуры воды. Для характеристики этих изменений используются, в частности, измерения диэлектрической проницаемости тканей в переменном поле.
Физикам хорошо известно, что данные диэлектрической спектроскопии таких гетерогенных систем вообще не могут быть разумно интерпретированы. Игнорируя физику воды и физику жидкостей в целом, авторы лженаучных работ говорят о "состоянии воды на субмолекулярном уровне" (?). А в одной диссертации "была обнаружена возможность наличия в растительных клетках... тринадцати видов водных структур" (!). Почему тринадцати, а не ста тринадцати? В качестве одного из тезисов этой же диссертации фигурирует многозначительное положение: "Регуляция состояния воды в клетке осуществляется адаптивно и иерархически, что обусловливает ее высокую надежность. Центральным пунктом регуляции выступает общий обмен веществ в целом растении, а локальным - функциональные группы (центры) неводных компонентов клетки". Слова эти звучат вполне наукообразно, но ведь они полностью лишены содержания! В действительности некоторое изменение структуры происходит только в мономолекулярном слое гидратной воды, взаимодействующей с биополимерами. Общее же изменение структуры воды при обычных температурах и давлениях невозможно, так как оно требует громадной затраты свободной энергии. Биополимеры в водном окружении строятся именно так, чтобы избежать изменения структуры воды.
В работах К.С. Тринчера, отрицающего справедливость второго начала термодинамики в биологии, утверждается, что "физическая особенность внутриклеточной воды заключается в ее упорядоченной, квазикристаллической структуре при одновременном сохранении свойства жидкой воды - низкого значения вязкости..."