(р-q ) Λ р)-q – табл. істинності (приклад), ствердний модус.
Можливо і так: і основа і наслідок більшого засновку є як ствердними, так і заперечу вальними судженнями: р-~q, p .
~q
Виділяючи умовні судження достовірні у всіх чотирьох модусах.
Розділово-категоричний – умовивід, в якому один із засновків – розділовий, а інший засновок і висновок – категоричні судження. Розрізняють два модуси розділово-категоричного умовиводу: 1) Ствердно-заперечний (modus ponento tollens – MPT) – менший засновок - категоричне судження – стверджує один член V, висновок – також категоричне судження – заперечує інший її член:
а або в В символічному записі:
а р v q, р
не-в ~q
Висновок достовірний, якщо виконується правило: більший засновок повинен бути виключаючим розділовим судженням, чи судження строгої V-ї.
2) Заперечно-ствердний модус (modus tollendo ponens – MNP) – менший засновок заперечує один диз’юнкт, висновок стверджує інший:
а чи в В символічному записі:
не а <р v q>, ~р < ... > - закрит. v.
в q
Висновок достовірний, якщо виконане правило: в більшому засновку повинні бути перераховані всі можливі судження – диз’юнктивне, тобто, велкий засновок повинен бути повним (закритим) диз’юнктивним висловлюванням.
Умовно-розділювальний – умовивід, в якому один засновок умовне, а інший розділове судження (чи лемматичний умовивід lemma – припущення). Розділове судження може містити дві і більше альтернативи, тому тематичний умовивід ділиться на дилеми, трилеми і т.д.
Розглянемо на прикладі дилеми структуру і види умовно-розділового умовиводу.
Розрізняють дві дилеми: конструктивну і деструктивну.
В простій конструктивній дилемі умовний засновок містить дві основи з яких витікає один і той же наслідок. Міркування направлене від ствердження істинності основи до ствердження істинності наслідку.
Якщо а , то с; якщо в, то с В символічному записі:
а або в (p-r) Λ (q-r), p v q
с r
В складній конструктивній дилемі умовний засновок містить дві основи і два наслідки. Міркування направлене від ствердження істинності основ до ствердження істинності наслідків: а чи с .
в чи d
В простій деструктивній дилемі умовний засновок містить одну основу, з якого випливає два можливих наслідки. Міркування направлене: від заперечення істинності наслідків до заперечення істинності основ.
Якщо а , то с; якщо a, то с В символічному записі:
не-в чи не-с (p-r) Λ (р-r), ~q v ~r
не-а ~p
В складній деструктивній дилемі умовний засновок містить дві основи і два наслідки. Міркування направлене від заперечення істинності наслідків до заперечення істинності основи:
Якщо а , то в; якщо с, то d В символічному записі:
не-в чи не-d (p-q) Λ (r-s), ~q v ~s
не-а або не-с ~p v ~r
ІІ. Видами дедуктивних умовиводів також є такі силогізми:
1) Скорочений (ентимема) – силогізм з пропущеним засновком чи висновком. Пропущені частини силогізму маються на увазі (подразумеваются). Розрізняють три види ентимем: з пропущеним більшим, меншим засновком і з пропущеним висновком. Форму ентимем приймають також умовиводи з умовними і розділовими судженнями в засновках.
Умовно-категоричні – з пропущеним більшим засновком.
Розділово-категоричні – з пропущеним більшим засновком.
Розділово-категоричні – з пропущеним висновком.
2) Складний силогізм чи полісилогізм – це поєднання простих силогізмів, в яких висновок передуючого силогізму (просилогізма) стає засновком наступного (епісилогізма). Розрізняють прогресивний і регресивний полісилогізми:
В прогресивному висновок просилогізма стає більшим засновком епісилогізма.
А-B А – посадовий злочин
C-A В – суспільно небезпечне діяння.
C-B С – халатність (злочин)
D-C D – наказуємо (дача хабаря).
D-B.
В регресивному полісилогізмі висновок просилогізма стає меншим засновком епісилогізма:
А – В
С – В
С – В
В – В
С – В
С - В
В процесі міркування полі силогізм приймає звичайно скорочену форму, деякі з його засновків опускаються. Полісилогізм, в якому пропущені деякі засновки, називається соритом (грец. “купа” (купа засновків) є два види соритів:
1) Прогресивний полісилогізм з пропущеними більшими засновками.
А – В
С – В
D – C
D - B
2) Регресивний полісилогізм з пропущеними меншими засновками. До складноскорочених належить також епіхейрема. Епіхейрема – це складноскорочений силогізм, обидва засновки якого є ентимемами.
C – A
A – D
C - D
ІІІ. Правило логіки висловлювань:
1. Правило відділення (усунення імплікації) ПВ (УІ) МР.
2. Введення кон’юнкції – ВК
3. Усунення кон’юнкції (УК)
4. ВД
5. Введення і усунення еквіваленції (ВЕ, УЕ)
ВЕ УЕ
6. Правило експортації і імпортації
(введення кон’юнкції)
П.Експ. (УК).
Лекція: Індуктивні умовиводи
План
1. Поняття індукції. Повна індукція.
2. Неповна індукція. Популярна індукція.
3. Наукова індукція.
1. Логічний перехід від знання про окремі явища до узагальненого знання здійснюється в формі індуктивного умовиводу, чи індукції (лат. industio - наведення).
Індуктивним є умовивід, в якому на основі належності ознаки окремим предметам чи частинам деякого класу роблять висновок про його належність класу в цілому.
Основна функція індуктивних виводів в процесі пізнання – генералізація, тобто отримання загальних суджень. В залежності від повноти і закінченості емпіричного дослідження розрізняють два види індуктивних умовиводів: повну і неповну індукцію.
Повна – умовивід, в якому на основі належності кожному елементу чи частині класу певної ознаки робиться висновок про приналежність ознаки класу в цілому.
1) S1 має ознаку Р
…………….
Sn ---//--- P
2) S1, S2, …, Sn – елементи (частини) класу К.
Всім предметам класу К притаманна ознака Р.
Ці умовиводи мають справу лише із закритими класами (число дозволяє реєструвати). Тут повнота інформації про кожний елемент класу є достатньою підставою для логічного перенесення ознаки на весь клас. Тому вивод в умовиводі повної індукції носить демонстративний характер. Істинність засновків – істинність висновку.
2. Неповна індукція – це умовивід, в якому на основі належності ознаки деяким елементам чи частинам класу робиться висновок про її належність класу в цілому (поля пшениці).
1) S1 має ознаку Р
…………….
Sn ---//--- P
2) S1, S2, …, Sn – належить класу К.
Класу К, напевно, притаманна ознака Р.
Індуктивний перехід від деяких до всіх не претендує на логічну необхідність, бо повторюваність ознаки може бути результатом спів падання. Їй характерно ослаблене логічне слідування - істинні засновки забезпечують отримання не достовірного, а лише проблематичного висновку. Отже, неповна індукція належить до правдоподібного (недемонстративного) умовиводу.
По способу відбору вихідного матеріалу розрізняють два види неповної індукції: 1) індукцію шляхом перерахування, яка отримала назву популярної індукції і 2) індукцію шляхом відбору – наукова індукція.
Популярна індукція – це узагальнення, якому шляхом перерахування встановлюють належність ознаки деяким предметам чи частинам класу і на цій онові проблематично робиться висновок про її належність всьому класу. Деколи її називають індукцією через просте перерахування. Обґрунтованість висновків в популярній індукції визначається головним чином кількісним показником: співвідношення досліджуваної множини предметів (взірця чи вибірки) до всього класу (популяції). (фактичні презумпції – досвідне узагальнення – тікання від суду, погроза вбивства, вкрадені речі (речовий доказ) свідчать про злочин і т.д.). Вона має евристичну функцію, наводить на думку що повторюваність невипадкова. Але в умовах, коли досліджуються лише деякі представники класу, є можливість помилкового узагальнення. Обов’язково враховувати – суперечливі випадки, суб’єктивізм відбору версій, які говорять лише за, і ті, що проти відкидають, з множини фактів вибирають лише ті, які є переважаючими в досвіді і будують на їх основі поспішне узагальнення (суєвірря).
3. Наукова індукція – це умовивід, в якому узагальнення будується шляхом відбору необхідних і виключення випадкових обставин. В залежності від способів дослідження розрізняють: (1) індукцію методом відбору (селекції) і (2) індукцію методом виключення (елімінації).
(1) Індукція методом відбору, чи селективна індукція – це умовивід, в якому висновок про приналежність ознаки класу (множині) базується на знанні про взірець (підмножині), отриманий методичним відбором явищ з різних частин цього класу. Тут треба врахувати показовість (представительность) чи репрезентативність взірця і різноманітність умов спостереження.